MATH 829: Introduction to Data Mining and Analysis Linear Regression: statistical tests

#### Dominique Guillot

Departments of Mathematical Sciences University of Delaware

February 17, 2016

## Statistical hypothesis testing

Suppose we have a linear model for some data:

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \epsilon$$

- An important problem is to identify which variables are really useful in predicting Y.
- We want to decide if  $\beta_i=0$  or not with some level of confidence.
- $\bullet$  Also want to test if groups of coefficients  $\{\beta_{i_k}: k=1,\ldots,l\}$  are zero.

1/16

## Statistical hypothesis testing (cont.)

Recall: to do a statistical test:

- $\bigcirc$  State a null hypothesis  $H_0$  and an alternative hypothesis  $H_1$ .
- Onstruct an appropriate test statistics.
- Derive the distribution of the test statistic under the null hypothesis.
- Select a significance level α (typically 5% or 1%).
- Compute the test statistics and decide if the null hypothesis is rejected at the given significance level.

### Example

 $\mbox{Example:}$  Suppose  $X \sim N(\mu,1)$  with  $\mu$  unknown. We want to test:

$$H_0 : \mu = 0$$
  
 $H_1 : \mu \neq 0.$ 

We have an iid sample  $X_1, \ldots, X_n \sim N(\mu, 1)$ . Recall: if  $X \sim N(\mu_1, \sigma_1^2)$  and  $Y \sim N(\mu_2, \sigma_2^2)$  are independent, then  $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ . Therefore, under  $H_0$ , we have

I herefore, under  $H_0$ , we have

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(0, \frac{1}{n}).$$

Test statistics:  $\sqrt{n} \cdot \hat{\mu} \sim N(0, 1)$ . Suppose we observed:  $\sqrt{n}\hat{\mu} = k$ .

Suppose we observed:  $\sqrt{n\mu} = \kappa$ .

We compute:

 $P(-z_{\alpha} \leq \sqrt{n\hat{\mu}} \leq z_{\alpha}) = P(-z_{\alpha} \leq N(0, 1) \leq z_{\alpha}) = 1 - \alpha.$ Reject the null hypothesis if  $k \notin [-z_{\alpha}, z_{\alpha}]$ . 2/16

### Example (cont.)

For example, suppose:  $\alpha=0.05,\,\sqrt{n}\hat{\mu}=2.2.$  If  $Z\sim N(0,1),$  then

$$P(-1.96 \le Z \le 1.96) = 0.95$$



-1.96 0 1.96 Therefore, it is very unlikely to observe  $\sqrt{n}\hat{\mu}=2.2$  if  $\mu=0.$  We reject the null hypothesis.

In fact,  $P(-2.2 \leq Z \leq 2.2) \approx 0.972.$  So our p-value is 0.028.

 $\bullet$  Type I error:  $\bar{H}_0$  true, but rejected  $\to$  False positive. (Controlled by the level  $\alpha).$ 

 $\bullet$  Type II error:  $H_0$  false, but not rejected  $\rightarrow$  False negative. (Power of the test).

\$/16

## Testing if coefficients are zero

- In practice, we often include unnecessary variables in linear models.
- These variables bias our estimator, and can lead to poor performance.
- Need ways of identifying a "good" set of predictors.

We now discuss a classical approach that uses statistical tests. Before, we tested if the mean of a  $N(\mu, 1)$  is zero:

$$H_0 : \mu = 0$$
  
 $H_1 : \mu \neq 0.$ 

assuming  $\sigma^2=1$  is known. What if the variance is unknown? Sample variance:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}, \quad \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

6/16

### Testing if coefficients are zero (cont.)

In general, suppose  $X \sim N(\mu, \sigma^2)$  with  $\sigma^2$  known and we want to test

$$H_0 : \mu = \mu_0$$
  
 $H_1 : \mu \neq \mu_0$ .

Under the  $H_0$  hypothesis, we have

$$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$$

Therefore, we use the test statistic

$$Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$$

If the variance is unknown, we replace  $\sigma$  by its sample version s

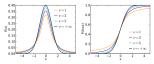
$$T = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}.$$

### Review: the student distribution

The student  $t_{
u}$  distribution with u degrees of freedom:

$$f_{\nu}(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

#### where $\Gamma$ is the Gamma function.





$$\frac{\overline{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}$$

Testing if coefficients are zero (cont.)

#### Back to testing regression coefficients: suppose

$$y_i = x_{i,1}\beta_1 + x_{i,2}\beta_2 + \cdots + x_{i,p}\beta_p + \epsilon_i$$

where  $(x_{ii})$  is a fixed matrix, and  $\epsilon_i$  are iid  $N(0, \sigma^2)$ . We saw that this implies

$$\hat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma^2)$$

In particular.

$$\ddot{\beta}_i \sim N(\beta_i, v_i \sigma^2),$$

where  $v_i$  is the *i*-th diagonal element of  $(X^T X)^{-1}$ . We want to test:

$$H_0$$
:  $\beta_i = 0$   
 $H_1$ :  $\beta_i \neq 0$ .

Note:  $n_i$  is known, but  $\sigma$  is unknown.

Testing if coefficients are zero (cont.)

(In other words, M is idempotent.)

Therefore.

Now.

 $\sum_{i=1}^n \hat{\epsilon}_i^2 = \hat{\epsilon}^T \hat{\epsilon} = \epsilon^T M^T M \epsilon.$  Note:  $M^T = M$  and

We showed  $\hat{\epsilon} = M \epsilon$  where  $M := I - X(X^T X)^{-1} X^T$ . Now

 $M^{T}M = M^{2} = (I - X(X^{T}X)^{-1}X^{T})(I - X(X^{T}X)^{-1}X^{T})$ 

 $\sum^{n} \hat{\epsilon}_{i}^{2} = \epsilon^{T} M \epsilon.$ 

 $= \operatorname{tr} ME(\epsilon \epsilon^T)$  $-\operatorname{tr} M \sigma^2 I - \sigma^2 \operatorname{tr} M$ 

 $= I - X(X^T X)^{-1}X^T = M.$ 

 $E(\epsilon^T M \epsilon) = E(tr(M \epsilon \epsilon^T))$  $= \operatorname{tr} E(M \epsilon \epsilon^T)$ 

9/16

# Testing if coefficients are zero (cont.)

Recall:

$$y_i = x_{i,1}\beta_1 + x_{i,2}\beta_2 + \cdots + x_{i,p}\beta_p + \epsilon_i$$

Problem: How do we estimate 
$$\sigma$$
?  
Let  $\hat{\epsilon}_i = y_i - (x_{i,1}\hat{\beta}_1 + x_{i,2}\hat{\beta}_2 + \cdots + x_{i,p}\hat{\beta}_p)$ . What about:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\epsilon}_i^2$$
 ?

$$\begin{split} & \text{What is } E(\hat{\sigma}^2)^2 \\ & \text{We have } y = X\beta + \epsilon \text{ and } \hat{\beta} = (X^TX)^{-1}X^Ty. \text{ Thus,} \\ & \hat{\epsilon} = y - X\hat{\beta} \\ & = y - X(X^TX)^{-1}X^Ty \\ & = (I - X(X^TX)^{-1}X^T)y \\ & = (I - X(X^TX)^{-1}X^T)(X\beta + \epsilon) \\ & = (I - X(X^TX)^{-1}X^T)\epsilon \\ & = M\epsilon. \end{split}$$

10/16

### Testing if coefficients are zero (cont.)

We proved:

$$E(\sum_{i=1}^n \hat{\epsilon}_i^2) = \sigma^2 \operatorname{tr} M,$$
 
$$= I - X(X^TX)^{-1}X^T. \text{ (Here } I = I_n\text{, the } n \times n \text{ identity}$$

where Mmatrix.)

What is tr M? Recall tr(AB) = tr(BA). Thus,

$$\begin{split} \mathrm{tr}\, M &= \mathrm{tr}(I - X(X^TX)^{-1}X^T) \\ &= n - \mathrm{tr}(X(X^TX)^{-1}X^T) \\ &= n - \mathrm{tr}(X^TX(X^TX)^{-1}) \\ &= n - \mathrm{tr}(I_p) \\ &= n - p. \end{split}$$

Therefore

$$\frac{1}{n-p}E(\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}) = \sigma^{2}$$

# Testing if coefficients are zero (cont.)

As a result of the previous calculation, our estimator of the variance  $\sigma^2$  in the regression model will be

$$s^2 = \frac{1}{n-p} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2,$$

where  $\hat{y}_i := x_{i,1}\hat{\beta}_1 + x_{i,2}\hat{\beta}_2 + \cdots + x_{i,p}\hat{\beta}_p$  is our prediction of  $y_i$ . Our test statistic is

$$\Gamma = \frac{\hat{\beta}_i}{s\sqrt{v_i}}, \quad v_i = ((X^T X)^{-1})_{ii}.$$

Under the null hypothesis  $H_0$ :  $\beta_i = 0$ , one can show that the above T statistic has a student distribution with n - p degrees of freedom:

 $T \sim t_{n-p}$ .

Thus, to test if  $\beta_i=0$ , we compute the value of the T satistic, say  $T=\hat{T}$  and reject the null hypothesis (at the  $\alpha=5\%$  level) if

$$P(|t_{n-p}| \ge \hat{T}) \le 0.05.$$

Important: This procedure cannot be iterated to remove multiple coefficients. We will see how this is done later.

13/16

### Confidence intervals for the regression coefficients

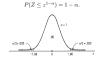
Recall that

$$\hat{\beta}_i \sim N(\beta_i, v_i \sigma^2).$$

Using our esimate  $s^2$  for  $\sigma^2$ , we can construct a  $1-2\alpha$  confidence interval for  $\beta_i$ :

$$\left(\hat{\beta}_{i} - z^{(1-\alpha)}\sqrt{v_{i}s}, \hat{\beta}_{i} + z^{(1-\alpha)}\sqrt{v_{i}s}\right)$$

Here  $z^{(1-\alpha)}$  is the  $(1-\alpha)$  th percentile of the N(0,1) distribution, i.e.,



14/16

### Python

- Unfortunately, scikit-learn doesn't compute t-statistics and confidence intervals.
- However, the module statsmodels provides exactly what we need.

```
import numpy as ap
import attamodels.spins em
import attamodels.formils.spins emf
* load dats
dat = m.datamots.get_rdataset("Guerry", "BistData").data
* fit regression model (using the natural log
* of one of the regressors)
* of one of the regressors)
* it rear (the regressors)
* it regression (the regressors)
* it proves (the regression)
* ingopolity (the regression), data etc.
* ingopolity (the regression)
* ingopolity (the regression); (the regression)
* ingopolity (the regression); (
```

#### Python (cont.)

| Dep. Variable:    |                  |        | R-squared:          |       | 0.348      |           |
|-------------------|------------------|--------|---------------------|-------|------------|-----------|
| /odel:            |                  |        | Adj. R-squared:     |       | 0.333      |           |
| lethod:           | Least Squares    |        | F-statistic:        |       | 22.20      |           |
| Date:             | Mon, 18 Jan 2016 |        | Prob (F-statistic): |       | 1.90e-08   |           |
| fime:             | 15:40:59         |        | Log-Likelihood:     |       | -379.82    |           |
| io. Observations: |                  |        |                     |       | 765.6      |           |
| Of Residuals:     |                  |        |                     |       | 773.0      |           |
| Of Model:         |                  |        |                     |       |            |           |
|                   |                  |        |                     |       |            |           |
|                   |                  |        |                     |       | [95.0% Col | nf. Int.] |
| Intercept         | 246.4341         | 35.233 | 6.995               | 0.000 | 176.358    | 316.510   |
| literacy          |                  | 0.128  | -3.832              | 0.000 | -0.743     | -0.235    |
| 1p.log(Pop1831)   | -31.3114         | 5.977  | -5.239              | 0.000 | -43.199    | -19.424   |
|                   |                  |        |                     |       |            |           |
| Denibus:          |                  | 3.713  | Durbin-Watson:      |       | 2.019      |           |
| Prob(Onnibus):    |                  | 0.156  | Jarque-Bera (JB):   |       | 3,394      |           |
| Skew:             |                  | -0.487 | Prob(JB):           |       | 0.183      |           |
| furtosis:         |                  | 3.003  | Cond. No.           |       |            |           |