MATH 829: Introduction to Data Mining and Analysis Linear Regression: statistical tests

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

February 17, 2016

Statistical hypothesis testing

Suppose we have a linear model for some data:

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \epsilon$$

- An important problem is to identify which variables are really useful in predicting Y.
- We want to decide if $\beta_i=0$ or not with some level of confidence.
- \bullet Also want to test if groups of coefficients $\{\beta_{i_k}: k=1,\ldots,l\}$ are zero.

1/16

Statistical hypothesis testing (cont.)

Recall: to do a statistical test:

- \bigcirc State a null hypothesis H_0 and an alternative hypothesis H_1 .
- Onstruct an appropriate test statistics.
- Derive the distribution of the test statistic under the null hypothesis.
- Select a significance level α (typically 5% or 1%).
- Compute the test statistics and decide if the null hypothesis is rejected at the given significance level.

Example

 $\mbox{Example:}$ Suppose $X \sim N(\mu,1)$ with μ unknown. We want to test:

$$H_0 : \mu = 0$$

 $H_1 : \mu \neq 0.$

We have an iid sample $X_1, \ldots, X_n \sim N(\mu, 1)$. Recall: if $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ are independent, then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$. Therefore, under H_0 , we have

I herefore, under H_0 , we have

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(0, \frac{1}{n}).$$

Test statistics: $\sqrt{n} \cdot \hat{\mu} \sim N(0, 1)$. Suppose we observed: $\sqrt{n}\hat{\mu} = k$.

Suppose we observed: $\sqrt{n\mu} = \kappa$.

We compute:

 $P(-z_{\alpha} \leq \sqrt{n\hat{\mu}} \leq z_{\alpha}) = P(-z_{\alpha} \leq N(0, 1) \leq z_{\alpha}) = 1 - \alpha.$ Reject the null hypothesis if $k \notin [-z_{\alpha}, z_{\alpha}]$. 2/16

Example (cont.)

For example, suppose: $\alpha=0.05,\,\sqrt{n}\hat{\mu}=2.2.$ If $Z\sim N(0,1),$ then

$$P(-1.96 \le Z \le 1.96) = 0.95$$

-1.96 0 1.96 Therefore, it is very unlikely to observe $\sqrt{n}\hat{\mu}=2.2$ if $\mu=0.$ We reject the null hypothesis.

In fact, $P(-2.2 \leq Z \leq 2.2) \approx 0.972.$ So our p-value is 0.028.

 \bullet Type I error: \bar{H}_0 true, but rejected \to False positive. (Controlled by the level $\alpha).$

 \bullet Type II error: H_0 false, but not rejected \rightarrow False negative. (Power of the test).

\$/16

Testing if coefficients are zero

- In practice, we often include unnecessary variables in linear models.
- These variables bias our estimator, and can lead to poor performance.
- Need ways of identifying a "good" set of predictors.

We now discuss a classical approach that uses statistical tests. Before, we tested if the mean of a $N(\mu, 1)$ is zero:

$$H_0 : \mu = 0$$

 $H_1 : \mu \neq 0.$

assuming $\sigma^2=1$ is known. What if the variance is unknown? Sample variance:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}, \quad \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

6/16

Testing if coefficients are zero (cont.)

In general, suppose $X \sim N(\mu, \sigma^2)$ with σ^2 known and we want to test

$$H_0 : \mu = \mu_0$$

 $H_1 : \mu \neq \mu_0$.

Under the H_0 hypothesis, we have

$$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$$

Therefore, we use the test statistic

$$Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$$

If the variance is unknown, we replace σ by its sample version s

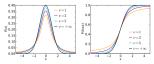
$$T = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}.$$

Review: the student distribution

The student $t_{
u}$ distribution with u degrees of freedom:

$$f_{\nu}(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

where Γ is the Gamma function.



$$\frac{\overline{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}$$

Testing if coefficients are zero (cont.)

Back to testing regression coefficients: suppose

$$y_i = x_{i,1}\beta_1 + x_{i,2}\beta_2 + \cdots + x_{i,p}\beta_p + \epsilon_i$$

where (x_{ii}) is a fixed matrix, and ϵ_i are iid $N(0, \sigma^2)$. We saw that this implies

$$\hat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma^2)$$

In particular.

$$\ddot{\beta}_i \sim N(\beta_i, v_i \sigma^2),$$

where v_i is the *i*-th diagonal element of $(X^T X)^{-1}$. We want to test:

$$H_0$$
: $\beta_i = 0$
 H_1 : $\beta_i \neq 0$.

Note: n_i is known, but σ is unknown.

Testing if coefficients are zero (cont.)

(In other words, M is idempotent.)

Therefore.

Now.

 $\sum_{i=1}^n \hat{\epsilon}_i^2 = \hat{\epsilon}^T \hat{\epsilon} = \epsilon^T M^T M \epsilon.$ Note: $M^T = M$ and

We showed $\hat{\epsilon} = M \epsilon$ where $M := I - X(X^T X)^{-1} X^T$. Now

 $M^{T}M = M^{2} = (I - X(X^{T}X)^{-1}X^{T})(I - X(X^{T}X)^{-1}X^{T})$

 $\sum^{n} \hat{\epsilon}_{i}^{2} = \epsilon^{T} M \epsilon.$

 $= \operatorname{tr} ME(\epsilon \epsilon^T)$ $-\operatorname{tr} M \sigma^2 I - \sigma^2 \operatorname{tr} M$

 $= I - X(X^T X)^{-1}X^T = M.$

 $E(\epsilon^T M \epsilon) = E(tr(M \epsilon \epsilon^T))$ $= \operatorname{tr} E(M \epsilon \epsilon^T)$

9/16

Testing if coefficients are zero (cont.)

Recall:

$$y_i = x_{i,1}\beta_1 + x_{i,2}\beta_2 + \cdots + x_{i,p}\beta_p + \epsilon_i$$

Problem: How do we estimate
$$\sigma$$
?
Let $\hat{\epsilon}_i = y_i - (x_{i,1}\hat{\beta}_1 + x_{i,2}\hat{\beta}_2 + \cdots + x_{i,p}\hat{\beta}_p)$. What about:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\epsilon}_i^2$$
 ?

$$\begin{split} & \text{What is } E(\hat{\sigma}^2)^2 \\ & \text{We have } y = X\beta + \epsilon \text{ and } \hat{\beta} = (X^TX)^{-1}X^Ty. \text{ Thus,} \\ & \hat{\epsilon} = y - X\hat{\beta} \\ & = y - X(X^TX)^{-1}X^Ty \\ & = (I - X(X^TX)^{-1}X^T)y \\ & = (I - X(X^TX)^{-1}X^T)(X\beta + \epsilon) \\ & = (I - X(X^TX)^{-1}X^T)\epsilon \\ & = M\epsilon. \end{split}$$

10/16

Testing if coefficients are zero (cont.)

We proved:

$$E(\sum_{i=1}^n \hat{\epsilon}_i^2) = \sigma^2 \operatorname{tr} M,$$

$$= I - X(X^TX)^{-1}X^T. \text{ (Here } I = I_n\text{, the } n \times n \text{ identity}$$

where Mmatrix.)

What is tr M? Recall tr(AB) = tr(BA). Thus,

$$\begin{split} \mathrm{tr}\, M &= \mathrm{tr}(I - X(X^TX)^{-1}X^T) \\ &= n - \mathrm{tr}(X(X^TX)^{-1}X^T) \\ &= n - \mathrm{tr}(X^TX(X^TX)^{-1}) \\ &= n - \mathrm{tr}(I_p) \\ &= n - p. \end{split}$$

Therefore

$$\frac{1}{n-p}E(\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}) = \sigma^{2}$$

Testing if coefficients are zero (cont.)

As a result of the previous calculation, our estimator of the variance σ^2 in the regression model will be

$$s^2 = \frac{1}{n-p} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2,$$

where $\hat{y}_i := x_{i,1}\hat{\beta}_1 + x_{i,2}\hat{\beta}_2 + \cdots + x_{i,p}\hat{\beta}_p$ is our prediction of y_i . Our test statistic is

$$\Gamma = \frac{\hat{\beta}_i}{s\sqrt{v_i}}, \quad v_i = ((X^T X)^{-1})_{ii}.$$

Under the null hypothesis H_0 : $\beta_i = 0$, one can show that the above T statistic has a student distribution with n - p degrees of freedom:

 $T \sim t_{n-p}$.

Thus, to test if $\beta_i=0$, we compute the value of the T satistic, say $T=\hat{T}$ and reject the null hypothesis (at the $\alpha=5\%$ level) if

$$P(|t_{n-p}| \ge \hat{T}) \le 0.05.$$

Important: This procedure cannot be iterated to remove multiple coefficients. We will see how this is done later.

13/16

Confidence intervals for the regression coefficients

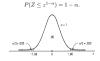
Recall that

$$\hat{\beta}_i \sim N(\beta_i, v_i \sigma^2).$$

Using our esimate s^2 for σ^2 , we can construct a $1-2\alpha$ confidence interval for β_i :

$$\left(\hat{\beta}_{i} - z^{(1-\alpha)}\sqrt{v_{i}s}, \hat{\beta}_{i} + z^{(1-\alpha)}\sqrt{v_{i}s}\right)$$

Here $z^{(1-\alpha)}$ is the $(1-\alpha)$ th percentile of the N(0,1) distribution, i.e.,



14/16

Python

- Unfortunately, scikit-learn doesn't compute t-statistics and confidence intervals.
- However, the module statsmodels provides exactly what we need.

```
import numpy as ap
import attamodels.spins em
import attamodels.formils.spins emf
* load dats
dat = m.datamots.get_rdataset("Guerry", "BistData").data
* fit regression model (using the natural log
* of one of the regressors)
* of one of the regressors)
* it rear (the regressors)
* it regression (the regressors)
* it proves (the regression)
* ingopolity (the regression), data etc.
* ingopolity (the regression)
* ingopolity (the regression); (the regression)
* ingopolity (the regression); (
```

Python (cont.)

Dep. Variable:			R-squared:		0.348	
/odel:			Adj. R-squared:		0.333	
lethod:	Least Squares		F-statistic:		22.20	
Date:	Mon, 18 Jan 2016		Prob (F-statistic):		1.90e-08	
fime:	15:40:59		Log-Likelihood:		-379.82	
io. Observations:					765.6	
Of Residuals:					773.0	
Of Model:						
					[95.0% Col	nf. Int.]
Intercept	246.4341	35.233	6.995	0.000	176.358	316.510
literacy		0.128	-3.832	0.000	-0.743	-0.235
1p.log(Pop1831)	-31.3114	5.977	-5.239	0.000	-43.199	-19.424
Denibus:		3.713	Durbin-Watson:		2.019	
Prob(Onnibus):		0.156	Jarque-Bera (JB):		3,394	
Skew:		-0.487	Prob(JB):		0.183	
furtosis:		3.003	Cond. No.			