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Testing multiple coe�cients

We saw before how to use the t-statistic to test

H0 : βi = 0

H1 : βi 6= 0.

Given {i1, i2, . . . , ik} ⊂ {1, 2, . . . , p}, we want to rigorously test

H0 : βi1 = βi2 = · · · = βik = 0

H1 : βi1 6= 0 or βi2 6= 0 or . . . or βik 6= 0.

We use the F statistic

F =
(RSS0 − RSS1)/(p− p0)

RSS1/(n− p)
,

where

RSS1 = residual sum of squares for full model,

RSS0 = residual sum of squares for the nested smaller model.

Can be seen as a measure of the change in residual sum-of-squares

per additional parameter in the bigger model.
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Testing multiple coe�cients (cont.)

Under the H0 assumption that the smaller model is correct, the F
statistic has an F -distribution

F ∼ Fp−p0,n−p.

To test if a group of coe�cients are 0:

1 Compute the F -statistic.

2 Reject H0 for large values of the F -statistic.
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Python

A simple illustration of the previous ideas.

import numpy as np
import statsmodels.api as sm

# Generate random data
n = 50

epsilon = np.random.randn(n,1) # Try varying the sample size

X = np.random.randn(n,5)

y = 3*X[:,0] + 4*X[:,1] + epsilon # Try changing coefficients

results = sm.OLS(y,X).fit()

print(results.summary())

R = [[0,0,1,0,0],
[0,0,0,1,0],
[0,0,0,0,1]]

print(results.f_test(R))

R = [[1,0,0,0,0],[0,1,0,0,0]]

print(results.f_test(R))
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Python (cont.)
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Subset selection

We saw before that the OLS is the best linear unbiased

estimator for β.

However, biased estimators can signi�cantly improve the
performance (e.g. reduce prediction error).

We now explore various approaches that can be used to select an
appropriate subset of variables in a linear regression.

Best subset selection: Given k ∈ {1, . . . , p}, we �nd the subset
of size k of {1, . . . , p} that minimizes the prediction error.

Note: there are
(
p
k

)
subsets of size k and 2k possible subsets.

So the procedure is only computationally feasible for small
values of p.

The leaps and bounds procedure (Furnival and Wilson, 1974)
makes this feasible for p as large as 30 or 40.
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Best subset selection: cars dataset

Best subset = ['Mileage','Liter','Doors','Cruise','Sound', 'Leather'].
Not included = ['Cylinder']

Best subset of 4 elements: ['Mileage','Liter','Cruise','Leather']
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Best subset selection: cars dataset, Chevrolet

Restricting to Chevrolet only:
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Forward- and Backward- stepwise regression

Best subset selection performs well, but is too computationally
intensive to be useful in practice.

Two natural �greedy� variants of the best subset selection
technique:

Forward stepwise regression: starts with the intercept y,
and then sequentially adds into the model the predictor that
most improves the �t.
Backward stepwise regression: starts with the full model,
and sequentially deletes the predictor that has the least impact
on the �t (smallest Z-score or t-score).

Can be used even when the number of variables is very large.
However,

Greedy approach: doesn't guarantee a global optimum.
Less rigorous than other methods, less supporting theory.

Nevertheless, the stepwise approaches often return predictors
similar to the predictors obtained from more complex methods with
better theory.
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Correlation

Recall: Covariance is a measure of linear dependence between
random variables:

Cov(X,Y ) = E ((X − E(X))(Y − E(Y ))) .

Properties:
1 Cov(·, ·) is bilinear and symmetric.
2 Cov(X,X) = Var(X).
3 Cov(X,Y ) = E(XY )− E(X)E(Y ).
4 X,Y independent ⇒ Cov(X,Y ) = 0.
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Correlation

How can we tell if variables have a linear relationship?

The correlation (coe�cient) between X and Y is given by:

ρ = ρ(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

.

The correlation coe�cient is a measure of the linear dependence
between two random variables.

Theorem: Assume Var(X),Var(Y ) <∞. The correlation
coe�cient ρ(X,Y ) satis�es

−1 ≤ ρ(X,Y ) ≤ 1.

Moreover, ρ(X,Y ) = ±1 if and only if P(Y = aX + b) = 1 for
some constants a, b. In this case, a > 0 if ρ(X,Y ) = 1 and a < 0
if ρ(X,Y ) = −1.
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Forward stagewise regression

Start with intercept y, and centered predictors with
coe�cients initially all 0.
At each step the algorithm: identify the variable most
correlated with the current residual.
Compute the simple linear regression coe�cient of the residual
on this chosen variable, and add it to the current coe�cient
for that variable.
Continued till none of the variables have correlation with the
residuals.

In other words:

C = ∅, ŷ1 = y, β1 = · · · = βp = 0.

Suppose Xi1 is most correlated to y.

C → C ∪ {Xi1}.

Solve y − ŷ1 = αi1Xi1 + ε.

βi1 → βi1 + αi1 .

etc.
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Forward stagewise regression (cont.)

Remarks:

1 Unlike forward-stepwise regression, none of the other variables
are adjusted when a term is added to the model.

2 The process can take more than p steps to reach the least
squares �t.

3 Historically, forward stagewise regression has been dismissed as
being ine�cient.

4 However, it can be quite competitive, especially in very
high-dimensional problems.
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Forward stagewise regression (cont.)

ESL, Fig. 3.6
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