MATH 829: Introduction to Data Mining and Analysis Model selection

Dominique Guillot

Departments of Mathematical Sciences
University of Delavare
February 24, 2016

- Ordinary least squares (OLS)
- Minimizes sum of squares.
- Best linear unbiased estimator.
- Solution not unique when $n<p$.
- Estimate unstable when the predictors are collinear.
- Generally does not lead to best prediction error. Bias-variance trade-off.
- Ridge regression (ℓ_{2} penalty)
- Regularized solution.
- Estimator exists and is stable, even when $n<p$.
- Easy to compute (add multiple of identity to $X^{T} X$).
- Coefficients not set to zero (no model selection).

Choosing parameters: cross-validation

- Ridge, lasso, elastic net have regularization parameters.
- We obtain a family of estimators as we vary the parameter(s).
- An optimal parameter needs to be chosen in a principled way.
- Cross-validation is a popular approach for rigorously choosing parameters.

K-fold cross-validation:

Split data into K equal (or almost equal) parts/folds at random. for each parameter λ_{i} do
for $j=1, \ldots, K$ do
Fit model on data with fold j removed.
Test model on remaining fold $\rightarrow j$-th test error.
end for
Compute average test errors for parameter λ_{i}.
end for
Pick parameter with smallest average error.

K-fold CV

More precisely,

- Split data into K folds F_{1}, \ldots, F_{K}.
- Let $L(y, \hat{y})$ be a loss function. For example,

$$
L(y, \hat{y})=\|y-\hat{y}\|_{2}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} .
$$

- Let $f_{\lambda}^{-k}(\mathbf{x})$ be the model fitted on all, but the k-th fold.
- Let
$C V(\lambda):=\frac{1}{n} \sum_{k=1}^{n} \sum_{i \in F_{k}} L\left(y_{i}, f_{\lambda}^{-i}\left(\mathbf{x}_{i}\right)\right)$

- Pick λ among a relevant set of parameters

$$
\hat{\lambda}=\underset{\lambda \in\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}}{\operatorname{argmin}} C V(\lambda)
$$

Python

Scikit-learn has nice general methods for splitting data.

```
from sklearn.cross_validation import train_test_split
import numpy as \(n p\)
\# Generate random data
\(\#\) Gener
\(\mathrm{n}=100\)
\(\mathrm{p}=5\)
\(\mathrm{X}=\mathrm{np} \cdot \mathrm{random} \cdot \operatorname{randn}(\mathrm{n}, \mathrm{p})\)
epsilon \(=n p \cdot r a n d o m, r a n d n(n) \# \operatorname{Not}(n, 1)\)
beta \(=n\).random, rand (p)
\(\mathrm{y}=\mathrm{X} \cdot \operatorname{dot}(\) beta \()+\) epsilon
\# Train-test split
X_train, \(X_{-}\)test, y_train, \(y_{-t e s t ~}=\)
    train_test_split(X, y, test_size=0.25)
print X_train. shape
print \(X_{-}\)test. shape
rint y_train.shape
print y_test.shape
\# K-fold CV
from sklearn. cross_validation import KFold
\(\mathrm{kf}=\mathrm{KFold}(100, \mathrm{n}\) folds=10)
for train, test in kf
    print( \(1 \%\) s \%s" \% (train, test))
```

Python: Implementing CV

```
import numpy as np
from sklearn.cross_validat ion import KFold
# Generate random data
l
X = np.random.randn (n,p)
epsilon = np.random.randn(n)
beta = np.zeros((p,1))
beta [0:8]= 10*np.random.rand( (8,1)
y = X.dot(beta) + epsilon
K}=10 # K-fold CV
alphas = np.exp(np. linspace(np. log(0.01),np.log(1),100))
N = len(alphas) # Number of lasso parameters
scores = np.zeros ((N,K))
kf = KFold(n, n_folds=K)
for i in range(N):
    clf = Lasso(alphas[i])
    for j, (train, test) in enumerate(kf):
```



```
        X[train], X[test], y[train], y[test]
        clf.fit(X_train, y-train)
Compute average CV score for each parameter
scores_avg = scores.mean(axis=1)
```


Implementing CV

Note: Here we want to choose α to maximize the R^{2}.
Exercise: Implement 10-fold CV for Ridge regression. Plot CV error.

LassoCV

Scikit-learn sometimes has automatic methods for performing cross-validation.

```
import numpy as np
mom sklearn linear model import LassoCV
import matplotlib.pyplot as plt
# Generate random data
n=100
X = np.random,randn(n,p)
epsil on = np.random.randn(n,1)
beta = np.zeros((p,1))
beta[0:8] = 10*np.random.rand(8,1)
y = X.dot(beta) + epsilon
K}=10 # K-fold CV
y = y.reshape(n) # LassoCV doesn't work if y is (n x 1)
clf = LassoCV(n_alphas = 100, cv = K)
clf.fit(x,y)
```

Remark: safer to examine CV curve.
For each parameter, one can also naturally report the standard deviation of the error acroos the different folds.

```
# Compute average CV score for each parameter
scores_avg = scores.mean(axis=1)
scores_std = scores.std(axis=1)
plt.plot(alphas, scores_avg,'-b')
plt.11l_betreen(alphas, scores_avg-scores_std,
cores_avg+s cores_std,facecolor='r',alpha=0.5)
plt.legend([r'Average $R ' 2$', r'One sd interval'],
    loc ='lower left')
plt.plot(alphas, np.ones((len(alphas),1))*s cores_avg.max(),
pl,--k', linewidth=1.2)
plt.xlabel(r',$\alpha$', fontsize=18)
plt.ylabel( }r,$R`2$', fontsize = 18)
plt.shov()
```


One sd rule (cont.)

- Provides an idea of the error made when estimating the R^{2}.
- Can pick a lasso parameter for which the maximum R^{2} is within a one standard deviation interval of the actual value.
- Useful technique to select a model that is more sparse in a principled way (when necessary)

Model selection vs Model assessment

Two related, but different goals:

- Model selection: estimating the performance of different models in order to choose the "best" one.
- Model assessment: having chosen a final model, estimating its prediction error (generalization error) on new data.
Model assessment: is the estimator really good? compare different models with their own sets of para meters.
Generally speaking, the CV error provides a good estimate of the prediction error.
- When enough data is available, it is better to separate the data into three parts: train/validate, and test.

- Typically: 50% train, 25% validate, 25% test.
- Test data is "kept in a vault", i.e., not used for fitting or choosing the model.
- Other methods (e.g. AIC, BIC, etc.) can be used when working with very little data.

