MATH 829: Introduction to Data Mining and Analysis Logistic regression

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

March 7, 2016

Suppose we work with binary outputs, i.e., $y_i \in \{0,1\}$.

Linear regression may not be the best model.

- $x^T \beta \in \mathbb{R}$ not in $\{0,1\}$.
- Linearity may not be appropriate. Does doubling the predictor doubles the probability of Y = 1? (e.g. probability of going to the beach vs outdoors temperature).

Suppose we work with binary outputs, i.e., $y_i \in \{0,1\}$.

Linear regression may not be the best model.

- $x^T \beta \in \mathbb{R}$ not in $\{0, 1\}$.
- Linearity may not be appropriate. Does doubling the predictor doubles the probability of Y = 1? (e.g. probability of going to the beach vs outdoors temperature).

Logistic regression: Different perspective. Instead of modelling the $\{0,1\}$ output, we model the probability that Y = 0, 1.

Suppose we work with binary outputs, i.e., $y_i \in \{0,1\}$.

Linear regression may not be the best model.

- $x^T \beta \in \mathbb{R}$ not in $\{0, 1\}$.
- Linearity may not be appropriate. Does doubling the predictor doubles the probability of Y = 1? (e.g. probability of going to the beach vs outdoors temperature).

Logistic regression: Different perspective. Instead of modelling the $\{0, 1\}$ output, we model the probability that Y = 0, 1. Idea: We model P(Y = 1|X = x).

- Now: $P(Y = 1 | X = x) \in [0, 1]$ instead of $\{0, 1\}$.
- We want to relate that probability to $x^T\beta$.

Suppose we work with binary outputs, i.e., $y_i \in \{0,1\}$.

Linear regression may not be the best model.

- $x^T \beta \in \mathbb{R}$ not in $\{0, 1\}$.
- Linearity may not be appropriate. Does doubling the predictor doubles the probability of Y = 1? (e.g. probability of going to the beach vs outdoors temperature).

Logistic regression: Different perspective. Instead of modelling the $\{0, 1\}$ output, we model the probability that Y = 0, 1. Idea: We model P(Y = 1|X = x).

- Now: $P(Y = 1 | X = x) \in [0, 1]$ instead of $\{0, 1\}$.
- We want to relate that probability to $x^T\beta$.

We assume

$$logit(P(Y = 1|X = x)) = log \frac{P(Y = 1|X = x)}{1 - P(Y = 1|X = x)}$$
$$= log \frac{P(Y = 1|X = x)}{P(Y = 0|X = x)} = x^T \beta.$$

Logistic regression (cont.)

Equivalently,

$$P(Y = 1|X = x) = \frac{e^{x^T\beta}}{1 + e^{x^T\beta}}$$
$$P(Y = 0|X = x) = 1 - P(Y = 1|X = x) = \frac{1}{1 + e^{x^T\beta}}$$

The function $f(x) = e^x/(1+e^x) = 1/(1+e^{-x})$ is called the *logistic function*.

• Larger negative values of $x^T \beta \Rightarrow p \approx 0$.

In summary, we are assuming:

- $Y|X = x \sim \text{Bernoulli}(p)$.
- $\operatorname{logit}(p) = \operatorname{logit}(E(Y|X = x)) = x^T \beta.$

In summary, we are assuming:

- $Y|X = x \sim \text{Bernoulli}(p)$.
- $\operatorname{logit}(p) = \operatorname{logit}(E(Y|X = x)) = x^T \beta.$

More generally, one can use a *generalized linear model* (GLM). A GLM consists of:

- A probability distribution for Y|X = x from the exponential family.
- A linear predictor $\eta = x^T \beta$.
- A link function g such that $g(E(Y|X = x)) = \eta$.

In logistic regression, we are assuming a model for Y. We typically estimate the parameter β using maximum likelihood.

In logistic regression, we are assuming a model for Y. We typically estimate the parameter β using maximum likelihood.

Recall: If $Y \sim \text{Bernoulli}(p)$, then

$$P(Y = y) = p^{y}(1-p)^{1-y}, \qquad y \in \{0,1\}.$$

In logistic regression, we are assuming a model for Y. We typically estimate the parameter β using maximum likelihood.

Recall: If $Y \sim \text{Bernoulli}(p)$, then

$$P(Y = y) = p^{y}(1-p)^{1-y}, \qquad y \in \{0,1\}.$$

Thus, $L(p)=\prod_{i=1}^n p^{y_i}(1-p)^{1-y_i}.$

In logistic regression, we are assuming a model for Y. We typically estimate the parameter β using maximum likelihood.

Recall: If $Y \sim \text{Bernoulli}(p)$, then

-

$$P(Y = y) = p^{y}(1-p)^{1-y}, \qquad y \in \{0,1\}.$$

Thus, $L(p) = \prod_{i=1}^{n} p^{y_i}(1-p)^{1-y_i}.$
Here $p = p(x_i,\beta) = \frac{e^{x_i^T\beta}}{1+e^{x_i^T\beta}}.$ Therefore,
 $L(\beta) = \prod_{i=1}^{n} p(x_i,\beta)^{y_i}(1-p(x_i,\beta))^{1-y_i}.$

In logistic regression, we are assuming a model for Y. We typically estimate the parameter β using maximum likelihood.

Recall: If $Y \sim \text{Bernoulli}(p)$, then

$$P(Y = y) = p^{y}(1-p)^{1-y}, \qquad y \in \{0, 1\}.$$

Thus,
$$L(p) = \prod_{i=1}^{n} p^{y_i} (1-p)^{1-y_i}$$
.
Here $p = p(x_i, \beta) = \frac{e^{x_i^T \beta}}{1+e^{x_i^T \beta}}$. Therefore,
 $L(\beta) = \prod_{i=1}^{n} p(x_i, \beta)^{y_i} (1-p(x_i, \beta))^{1-y_i}$.

Taking the logarithm, we obtain

$$l(\beta) = \sum_{i=1}^{n} y_i \log p(x_i, \beta) + (1 - y_i) \log(1 - p(x_i, \beta))$$

=
$$\sum_{i=1}^{n} y_i (x_i^T \beta - \log(1 + x_i^T \beta)) - (1 - y_i) \log(1 + e^{x_i^T \beta})$$

=
$$\sum_{i=1}^{n} [y_i x_i^T \beta - \log(1 + e^{x_i^T \beta})].$$

5/11

Taking the derivative:

$$\frac{\partial}{\partial \beta_j} l(\beta) = \sum_{i=1}^n \left[y_i x_{ij} - x_{ij} \frac{e^{x_i^T \beta}}{1 + e^{x_i^T \beta}} \right].$$

Needs to be solved using numerical methods (e.g. Newton-Raphson).

Logistic regression often performs well in applications.

As before, penalties can be added to regularize the problem or induce sparsity. For example,

$$\begin{split} \min_{\beta} -l(\beta) + \alpha \|\beta\|_1\\ \min_{\beta} -l(\beta) + \alpha \|\beta\|_2. \end{split}$$

Example

South African Heart Disease (ESL):

- Subset of the Coronary Risk-Factor Study (CORIS) baseline survey.
- Carried out in three rural areas of the Western Cape, South Africa (Rousseauw et al., 1983).
- Aim of the study was to establish the intensity of ischemic heart disease risk factors in that high-incidence region
- Data represent white males between 15 and 64, and the response variable is the presence or absence of myocardial infarction (MI) at the time of the survey.
- 160 cases in dataset, and a sample of 302 controls.

Dataset variables

sbp tobacco ldl adiposity	systolic blood pressure cumulative tobacco (kg) low densiity lipoprotein cholesterol
famhist typea obesity	family history of heart disease (Present, Absent) type-A behavior
al cohol age chd	current alcohol consumption age at onset response, coronary heart disease

Example (cont.)

FIGURE 4.12. A scatterplot matrix of the South African heart disease data. Each plot shows a pair of risk factors, and the cases and controls are color coded (red is a case). The variable family history of heart disease (familst) is binary (yes or no).

Example (cont.)

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import train_test_split
data = pd.read_csv('../../data/SouthAfrica_Heart/SAheart.csv')
y = np.array(data['chd'])
X = np.array(data.drop('chd',axis=1))
# Separate data into train/test
N = 100 \# Number of repetitions
log_model = LogisticRegression(fit_intercept=True)
score = np.zeros((N,1))
for i in range(N):
    X_train, X_test, y_train, y_test =
     train_test_split(X, y, test_size=0.25)
    log_model.fit(X_train,y_train)
    score[i] = log_model.score(X_test, y_test)
print score.mean()
print score.std()
```

We obtain about 72% accuracy with a standard deviation of $\approx 4\%$.

Logistic regression with more than 2 classes

- Suppose now the response can take any of $\{1,\ldots,K\}$ values.
- Can still use logistic regression.
- We use the categorical distribution instead of the Bernoulli distribution.

•
$$P(Y = i | X = x) = p_i, \ 0 \le p_i \le 1, \ \sum_{i=1}^{K} p_i = 1.$$

• Each category has its own set of coefficients:

$$P(Y = i | X = x) = \frac{e^{x^T \beta^{(i)}}}{\sum_{i=1}^{K} e^{x^T \beta^{(i)}}}.$$

 Estimation can be done using maximum likelihood as for the binary case.

Example: handwritten digits

- Normalized handwritten digits, automatically scanned from envelopes by the U.S. Postal Service.
- Images here have been deslanted and size normalized, resulting in 16 x 16 grayscale images (Le Cun et al., 1990).
- Each line consists of the digit id (0-9) followed by the 256 grayscale values.
- There are 7291 training observations and 2007 test observations.
- The test set is notoriously "difficult", and a 2.5% error rate is excellent.
- These data were kindly made available by the neural network group at AT&T research labs (thanks to Yann Le Cunn).

Exercise: Use logistic regression to predict the handwritten digits. Compute the prediction error of your model on the given test set.