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Logistic regression

Suppose we work with binary outputs, i.e., yi ∈ {0, 1}.
Linear regression may not be the best model.

xTβ ∈ R not in {0, 1}.
Linearity may not be appropriate. Does doubling the predictor

doubles the probability of Y = 1? (e.g. probability of going to

the beach vs outdoors temperature).

Logistic regression: Di�erent perspective. Instead of modelling

the {0, 1} output, we model the probability that Y = 0, 1.

Idea: We model P (Y = 1|X = x).

Now: P (Y = 1|X = x) ∈ [0, 1] instead of {0, 1}.
We want to relate that probability to xTβ.

We assume

logit(P (Y = 1|X = x)) = log
P (Y = 1|X = x)

1− P (Y = 1|X = x)

= log
P (Y = 1|X = x)

P (Y = 0|X = x)
= xTβ.
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Logistic regression (cont.)

Equivalently,

P (Y = 1|X = x) =
ex

T β

1 + exT β

P (Y = 0|X = x) = 1− P (Y = 1|X = x) =
1

1 + exT β

The function f(x) = ex/(1 + ex) = 1/(1 + e−x) is called the

logistic function.

log P (Y=1|X=x)
P (Y=0|X=x) is the

log-odds ratio.

Larger positive values of xTβ ⇒ p ≈ 1.

Larger negative values of xTβ ⇒ p ≈ 0.
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Logistic regression (cont.)

In summary, we are assuming:

Y |X = x ∼ Bernoulli(p).

logit(p) = logit(E(Y |X = x)) = xTβ.

More generally, one can use a generalized linear model (GLM). A

GLM consists of:

A probability distribution for Y |X = x from the exponential

family.

A linear predictor η = xTβ.

A link function g such that g(E(Y |X = x)) = η.
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Logistic regression: estimating the parameters

In logistic regression, we are assuming a model for Y . We typically

estimate the parameter β using maximum likelihood.

Recall: If Y ∼ Bernoulli(p), then

P (Y = y) = py(1− p)1−y, y ∈ {0, 1}.
Thus, L(p) =

∏n
i=1 p

yi(1− p)1−yi .
Here p = p(xi, β) =

ex
T
i β

1+ex
T
i
β
. Therefore,

L(β) =

n∏
i=1

p(xi, β)
yi(1− p(xi, β))1−yi .

Taking the logarithm, we obtain

l(β) =

n∑
i=1

yi log p(xi, β) + (1− yi) log(1− p(xi, β))

=

n∑
i=1

yi(x
T
i β − log(1 + xTi β))− (1− yi) log(1 + ex

T
i β)

=

n∑
i=1

[yix
T
i β − log(1 + ex

T
i β)].

5/11



Logistic regression: estimating the parameters

In logistic regression, we are assuming a model for Y . We typically

estimate the parameter β using maximum likelihood.

Recall: If Y ∼ Bernoulli(p), then

P (Y = y) = py(1− p)1−y, y ∈ {0, 1}.

Thus, L(p) =
∏n
i=1 p

yi(1− p)1−yi .
Here p = p(xi, β) =

ex
T
i β

1+ex
T
i
β
. Therefore,

L(β) =

n∏
i=1

p(xi, β)
yi(1− p(xi, β))1−yi .

Taking the logarithm, we obtain

l(β) =

n∑
i=1

yi log p(xi, β) + (1− yi) log(1− p(xi, β))

=

n∑
i=1

yi(x
T
i β − log(1 + xTi β))− (1− yi) log(1 + ex

T
i β)

=

n∑
i=1

[yix
T
i β − log(1 + ex

T
i β)].

5/11



Logistic regression: estimating the parameters

In logistic regression, we are assuming a model for Y . We typically

estimate the parameter β using maximum likelihood.

Recall: If Y ∼ Bernoulli(p), then

P (Y = y) = py(1− p)1−y, y ∈ {0, 1}.
Thus, L(p) =

∏n
i=1 p

yi(1− p)1−yi .

Here p = p(xi, β) =
ex
T
i β

1+ex
T
i
β
. Therefore,

L(β) =

n∏
i=1

p(xi, β)
yi(1− p(xi, β))1−yi .

Taking the logarithm, we obtain

l(β) =

n∑
i=1

yi log p(xi, β) + (1− yi) log(1− p(xi, β))

=

n∑
i=1

yi(x
T
i β − log(1 + xTi β))− (1− yi) log(1 + ex

T
i β)

=

n∑
i=1

[yix
T
i β − log(1 + ex

T
i β)].

5/11



Logistic regression: estimating the parameters

In logistic regression, we are assuming a model for Y . We typically

estimate the parameter β using maximum likelihood.

Recall: If Y ∼ Bernoulli(p), then

P (Y = y) = py(1− p)1−y, y ∈ {0, 1}.
Thus, L(p) =

∏n
i=1 p

yi(1− p)1−yi .
Here p = p(xi, β) =

ex
T
i β

1+ex
T
i
β
. Therefore,

L(β) =

n∏
i=1

p(xi, β)
yi(1− p(xi, β))1−yi .

Taking the logarithm, we obtain

l(β) =

n∑
i=1

yi log p(xi, β) + (1− yi) log(1− p(xi, β))

=

n∑
i=1

yi(x
T
i β − log(1 + xTi β))− (1− yi) log(1 + ex

T
i β)

=

n∑
i=1

[yix
T
i β − log(1 + ex

T
i β)].

5/11



Logistic regression: estimating the parameters

In logistic regression, we are assuming a model for Y . We typically

estimate the parameter β using maximum likelihood.

Recall: If Y ∼ Bernoulli(p), then

P (Y = y) = py(1− p)1−y, y ∈ {0, 1}.
Thus, L(p) =

∏n
i=1 p

yi(1− p)1−yi .
Here p = p(xi, β) =

ex
T
i β

1+ex
T
i
β
. Therefore,

L(β) =

n∏
i=1

p(xi, β)
yi(1− p(xi, β))1−yi .

Taking the logarithm, we obtain

l(β) =

n∑
i=1

yi log p(xi, β) + (1− yi) log(1− p(xi, β))

=

n∑
i=1

yi(x
T
i β − log(1 + xTi β))− (1− yi) log(1 + ex

T
i β)

=

n∑
i=1

[yix
T
i β − log(1 + ex

T
i β)].

5/11



Logistic regression: estimating the parameters

Taking the derivative:

∂

∂βj
l(β) =

n∑
i=1

[
yixij − xij

ex
T
i β

1 + ex
T
i β

]
.

Needs to be solved using numerical methods

(e.g. Newton-Raphson).

Logistic regression often performs well in applications.

As before, penalties can be added to regularize the problem or

induce sparsity. For example,

min
β
−l(β) + α‖β‖1

min
β
−l(β) + α‖β‖2.
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Example

South African Heart Disease (ESL):

Subset of the Coronary Risk-Factor Study (CORIS) baseline survey.

Carried out in three rural areas of the Western Cape, South Africa
(Rousseauw et al., 1983).

Aim of the study was to establish the intensity of ischemic heart disease
risk factors in that high-incidence region

Data represent white males between 15 and 64, and the response variable
is the presence or absence of myocardial infarction (MI) at the time of the
survey.

160 cases in dataset, and a sample of 302 controls.

Dataset variables
sbp systolic blood pressure
tobacco cumulative tobacco (kg)
ldl low densiity lipoprotein cholesterol
adiposity
famhist family history of heart disease (Present, Absent)
typea type-A behavior
obesity
alcohol current alcohol consumption
age age at onset
chd response, coronary heart disease

7/11



Example (cont.)

ESL
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Example (cont.)

import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import train_test_split

data = pd.read_csv('../../../data/SouthAfrica_Heart/SAheart.csv')

y = np.array(data['chd'])
X = np.array(data.drop('chd',axis=1))

# Separate data into train/test
N = 100 # Number of repetitions

log_model = LogisticRegression(fit_intercept=True)
score = np.zeros((N,1))
for i in range(N):

X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.25)
log_model.fit(X_train,y_train)
score[i] = log_model.score(X_test, y_test)

print score.mean()
print score.std()

We obtain about 72% accuracy with a standard deviation of ≈ 4%.
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Logistic regression with more than 2 classes

Suppose now the response can take any of {1, . . . ,K} values.
Can still use logistic regression.

We use the categorical distribution instead of the Bernoulli

distribution.

P (Y = i|X = x) = pi, 0 ≤ pi ≤ 1,
∑K

i=1 pi = 1.

Each category has its own set of coe�cients:

P (Y = i|X = x) =
ex

T β(i)∑K
i=1 e

xT β(i)
.

Estimation can be done using maximum likelihood as for the

binary case.
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Example: handwritten digits

Normalized handwritten digits, automatically scanned from

envelopes by the U.S. Postal Service.

Images here have been deslanted and size normalized, resulting

in 16 x 16 grayscale images (Le Cun et al., 1990).

Each line consists of the digit id (0-9) followed by the 256

grayscale values.

There are 7291 training observations and 2007 test

observations.

The test set is notoriously �di�cult�, and a 2.5% error rate is

excellent.

These data were kindly made available by the neural network

group at AT&T research labs (thanks to Yann Le Cunn).

Exercise: Use logistic regression to predict the handwritten digits.

Compute the prediction error of your model on the given test set.
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