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Linear discriminant analysis (LDA)

Categorical data Y . Predictors X1, . . . , Xp.

We saw how logistic regression can be used to predict Y by

modelling the log-odds

log
P (Y = 1|X = x)

P (Y = 0|X = x)
= xTβ.

More now examine other models for P (Y = i|X = x).

Recall: Bayes' theorem (Rev. Thomas Bayes, 1701�1761). Given

two events A,B:

P (A|B) =
P (B|A)P (A)

P (B)

Source: Wikipedia (Public Domain).
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Using Bayes' theorem

P (Y = i|X = x) harder to model.

P (X = x|Y = i) easier to model.

P (X = x|Y = red).

Going back to our prediction using Bayes' theorem:

P (Y = i|X = x) =
P (X = x|Y = i)P (Y = i)

P (X = x)
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Using Bayes' theorem

More precisely, suppose

Y ∈ {1, . . . , k}.
P (Y = i) = πi (i = 1, . . . , k).

P (X = x|Y = i) ∼ fi(x) (i = 1, . . . , k).

Then

P (Y = i|X = x) =
P (X = x|Y = i)P (Y = i)

P (X = x)

=
P (X = x|Y = i)P (Y = i)∑k
j=1 P (X = x|Y = j)P (Y = j)

=
fi(x)πi∑k
j=1 fj(x)πj

.

We can easily estimate πi using the proportion of observations

in category i.

We need a model for fi(x).
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Using a Gaussian model: LDA and QDA

A natural model for the fjs is the multivariate Gaussian

distribution:

fj(x) =
1√

(2π)p det Σj

e−
1
2

(x−µj)T Σ−1
j (x−µj).

Linear discriminant analysis (LDA): We assume Σj = Σ for all

j = 1, . . . , k.

Quadratic discriminant analysis (QDA): general case, i.e., Σj

can be distinct.

Note: When p is large, using QDA instead of LDA can dramatically

increase the number of parameters to estimate.

In order to use LDA or QDA, we need:

An estimate of the class probabilities πj .

An estimate of the mean vectors µj .

An estimate of the covariance matrices Σj (or Σ for LDA).
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Estimating the parameters

LDA: Suppose we have N observations, and Nj of these

observations belong to the j category (j = 1, . . . , k). We use

π̂j = Nj/N .

µ̂j = 1
Nj

∑
yi=j

xi (average of x over each category).

Σ̂ = 1
N−k

∑k
j=1

∑
yi=j

(xi − µ̂j)(xi − µ̂j)T . (Pooled variance.)

ESL, Figure 4.5.
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LDA: linearity of the decision boundary

In the previous �gure, we saw that the decision boundary is linear.
Indeed, examining the log-odds:

log
P (Y = l|X = x)

P (Y = m|X = x)
= log

fl(x)

fm(x)
+ log

πl
πm

= log
πl
πm
− 1

2
(µl + µm)T Σ−1(µl − µm) + xT Σ−1(µl − µm)

= β0 + xTβ.

Note that the previous expression is linear in x.
Recall that for logistic regression, we model

log
P (Y = l|X = x)

P (Y = m|X = x)
= β0 + xTβ.

How is this di�erent from LDA?

In LDA, the parameters are more constrained and are not estimated

the same way.

Can lead to smaller variance if the Gaussian model is correct.

In practice, logistic regression is considered safer and more robust.

LDA and logistic regression often return similar results.
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QDA: quadratic decision boundary

Let us now examing the log-odds for QDA: in that case no

simpli�cation occurs as before

log
P (Y = l|X = x)

P (Y = m|X = x)

= log
πl
πm

+
1

2
log

det Σm

det Σl

− 1

2
(x− µl)TΣ−1

l (x− µl)−
1

2
(x− µm)TΣ−1

l (x− µm).

ESL, Figure 4.6.
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LDA and QDA

Despite their simplicity, LDA and QDA often perform very well.

Both techniques are widely used.

Problems when n < p:

Estimating covariance matrices when n is small compared to p
is challenging.

The sample covariance (MLE for Gaussian)

S = 1
n−1

∑n
j=1(xi − µ̂)(xi − µ̂)T has rank at most min(n, p)

so is singular when n < p.

This is a problem since Σ needs to be inverted in LDA and

QDA.

Many strategies exist to obtain better estimates of Σ (or Σj).

Among them:

Regularization methods. E.g. Σ̂(λ) = Σ̂ + λI.

Graphical modelling (discussed later during the course).
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Python

LDA:

from sklearn.lda import LDA

QDA:

from sklearn.qda import QDA

10/10


