MATH 829: Introduction to Data Mining and Analysis Support vector machines

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

March 11, 2016

Hyperplanes

Recall:

- \bullet A $hyperplane \; H$ in $V = \mathbb{R}^n$ is a subspace of V of dimension
- n-1 (i.e., a subspace of codimension 1).
- \bullet Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^n$ via

$$H = \{ x \in \mathbb{R}^n : \beta^T x = 0 \} = \operatorname{span}(\beta)^{\perp}.$$

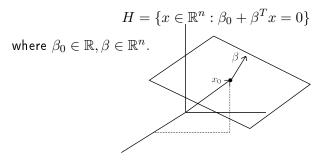
Hyperplanes

Recall:

- A hyperplane H in $V = \mathbb{R}^n$ is a subspace of V of dimension n-1 (i.e., a subspace of codimension 1).
- \bullet Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^n$ via

$$H = \{ x \in \mathbb{R}^n : \beta^T x = 0 \} = \operatorname{span}(\beta)^{\perp}.$$

 \bullet An affine hyperplane H in \mathbb{R}^n is a subset of the form



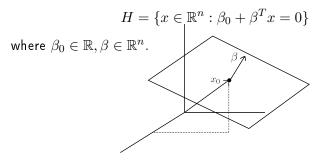
Hyperplanes

Recall:

- A hyperplane H in $V = \mathbb{R}^n$ is a subspace of V of dimension n-1 (i.e., a subspace of codimension 1).
- \bullet Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^n$ via

$$H = \{ x \in \mathbb{R}^n : \beta^T x = 0 \} = \operatorname{span}(\beta)^{\perp}.$$

• An affine hyperplane H in \mathbb{R}^n is a subset of the form



• We often use the term "hyperplane" for "affine hyperplane".

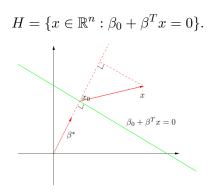
Hyperplanes (cont.)

Let

$$H = \{x \in \mathbb{R}^n : \beta_0 + \beta^T x = 0\}.$$

Hyperplanes (cont.)

Let



Note that for $x_0, x_1 \in H$,

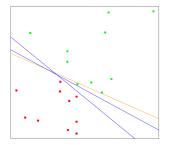
$$\beta^T (x_0 - x_1) = 0.$$

Thus β is perpendicular to H. It follows that for $x \in \mathbb{R}^n$,

$$d(x,H) = \frac{\beta^T}{\|\beta\|} (x - x_0) = \frac{\beta_0 + \beta^T x}{\|\beta\|}.$$

Separating hyperplane

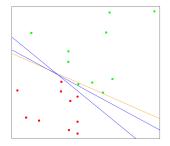
Suppose we have binary data with labels $\{+1, -1\}$. We want to separate data using an (affine) hyperplane.



ESL, Figure 4.14. (Orange = least-squares)

Separating hyperplane

Suppose we have binary data with labels $\{+1, -1\}$. We want to separate data using an (affine) hyperplane.

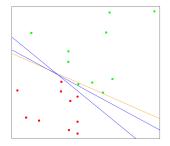


ESL, Figure 4.14. (Orange = least-squares)

Classify using $G(x) = \operatorname{sgn}(x^T\beta + \beta_0)$.

Separating hyperplane

Suppose we have binary data with labels $\{+1, -1\}$. We want to separate data using an (affine) hyperplane.

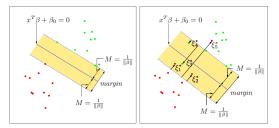


ESL, Figure 4.14. (Orange = least-squares)

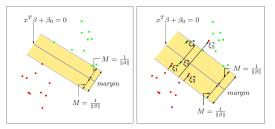
Classify using $G(x) = \operatorname{sgn}(x^T\beta + \beta_0)$.

- Separating hyperplane may not be unique.
- Separating hyperplane may not exist (i.e., data may not be separable).

Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").

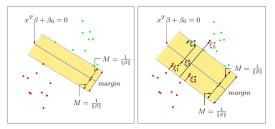


Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").



Data: $(y_i, x_i) \in \{+1, -1\} \times \mathbb{R}^p$ (i = 1, ..., n). Suppose $\beta_0 + \beta^T x$ is a separating hyperplane with $\|\beta\| = 1$.

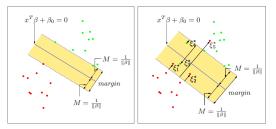
Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").



Data: $(y_i, x_i) \in \{+1, -1\} \times \mathbb{R}^p$ (i = 1, ..., n). Suppose $\beta_0 + \beta^T x$ is a separating hyperplane with $\|\beta\| = 1$. Note that:

> $y_i(x_i^T\beta + \beta_0) > 0 \Rightarrow \text{Correct classification}$ $y_i(x_i^T\beta + \beta_0) < 0 \Rightarrow \text{Incorrect classification}$

Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").



Data: $(y_i, x_i) \in \{+1, -1\} \times \mathbb{R}^p$ (i = 1, ..., n). Suppose $\beta_0 + \beta^T x$ is a separating hyperplane with $\|\beta\| = 1$. Note that:

 $y_i(x_i^T\beta + \beta_0) > 0 \Rightarrow \text{Correct classification}$ $y_i(x_i^T\beta + \beta_0) < 0 \Rightarrow \text{Incorrect classification}$ Also, $|y_i(x_i^T\beta + \beta_0)| = \text{distance between } x \text{ and hyperplane (since } \|\beta\| = 1).$

Thus, if the data is separable, we can solve

 $\max_{\substack{\beta_0, \beta \in \mathbb{R}^p, \|\beta\|=1}} M$ subject to $y_i(x_i^T \beta + \beta_0) \ge M$ $(i = 1, \dots, n).$

Thus, if the data is separable, we can solve

$$\max_{\substack{\beta_0,\beta \in \mathbb{R}^p, \|\beta\|=1}} M$$

subject to $y_i(x_i^T \beta + \beta_0) \ge M$ $(i = 1, \dots, n)$

We will transform the problem into a usual form used in convex optimization.

•

Thus, if the data is separable, we can solve

$$\max_{\substack{\beta_0,\beta \in \mathbb{R}^p, \|\beta\|=1}} M$$

subject to $y_i(x_i^T\beta + \beta_0) \ge M$ $(i = 1, \dots, n).$

We will transform the problem into a usual form used in convex optimization.

We can remove $\|\beta\|=1$ by replacing the constraint by

 $\frac{1}{\|\beta\|} y_i(x_i^T \beta + \beta_0) \ge M, \quad \text{or equivalently}, \quad y_i(x_i^T \beta + \beta_0) \ge M \|\beta\|.$

Thus, if the data is separable, we can solve

$$\max_{\substack{\beta_0,\beta \in \mathbb{R}^p, \|\beta\|=1}} M$$

subject to $y_i(x_i^T\beta + \beta_0) \ge M$ $(i = 1, \dots, n).$

We will transform the problem into a usual form used in convex optimization.

We can remove $\|\beta\|=1$ by replacing the constraint by

 $\frac{1}{\|\beta\|} y_i(x_i^T \beta + \beta_0) \ge M, \quad \text{or equivalently}, \quad y_i(x_i^T \beta + \beta_0) \ge M \|\beta\|.$

We can always rescale (β,β_0) so that $\|\beta\|=1/M.$ Our problem is therefore equivalent to

$$\min_{\substack{\beta_0,\beta \in \mathbb{R}^p}} \frac{1}{2} \|\beta\|^2$$

subject to $y_i(x_i^T \beta + \beta_0) \ge 1$ $(i = 1, \dots, n)$

Thus, if the data is separable, we can solve

$$\max_{\substack{\beta_0,\beta \in \mathbb{R}^p, \|\beta\|=1}} M$$

subject to $y_i(x_i^T\beta + \beta_0) \ge M$ $(i = 1, \dots, n).$

We will transform the problem into a usual form used in convex optimization.

We can remove $\|\beta\|=1$ by replacing the constraint by

 $\frac{1}{\|\beta\|} y_i(x_i^T \beta + \beta_0) \ge M, \quad \text{or equivalently}, \quad y_i(x_i^T \beta + \beta_0) \ge M \|\beta\|.$

We can always rescale (β,β_0) so that $\|\beta\|=1/M.$ Our problem is therefore equivalent to

$$\min_{\substack{\beta_0,\beta \in \mathbb{R}^p}} \frac{1}{2} \|\beta\|^2$$

subject to $y_i(x_i^T \beta + \beta_0) \ge 1$ $(i = 1, \dots, n).$

We now recognize the problem as a convex optimization problem with a quadratic objective, and linear inequality constraints.

• The previous problem works well when the data is *separable*. What happens if there is no way to find a margin?

• The previous problem works well when the data is *separable*. What happens if there is no way to find a margin?

• We allow some points to be on the wrong side of the margin, but keep control on the error.

• The previous problem works well when the data is *separable*. What happens if there is no way to find a margin? • We allow some points to be on the wrong side of the margin, but keep control on the error. We replace $y_i(x_i^T\beta + \beta_0) \ge M$ by

$$y_i(x_i^T\beta + \beta_0) \ge M(1 - \xi_i), \qquad \xi_i \ge 0,$$

and add the constraint

$$\sum_{i=1}^{n} \xi_i \le C \quad \text{for some fixed constant } C > 0.$$

• The previous problem works well when the data is *separable*. What happens if there is no way to find a margin? • We allow some points to be on the wrong side of the margin, but keep control on the error. We replace $y_i(x_i^T\beta + \beta_0) \ge M$ by

$$y_i(x_i^T\beta + \beta_0) \ge M(1 - \xi_i), \qquad \xi_i \ge 0,$$

and add the constraint

$$\sum_{i=1}^{n} \xi_i \le C \quad \text{for some fixed constant } C > 0.$$

The problem becomes:

$$\max_{\substack{\beta_0,\beta \in \mathbb{R}^p, \|\beta\|=1}} M$$

subject to $y_i(x_i^T\beta + \beta_0) \ge M(1 - \xi_i)$
 $\xi_i \ge 0, \qquad \sum_{i=1}^n \xi_i \le C.$

As before, we can transform the problem into its "normal" form:

$$\begin{split} \min_{\beta_0,\beta} \frac{1}{2} \|\beta\|^2 \\ \text{subject to } y_i(x_i^T\beta + \beta_0) \ge 1 - \xi_i \\ \xi_i \ge 0, \qquad \sum_{i=1}^n \xi_i \le C. \end{split}$$

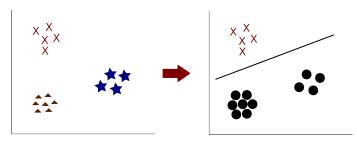
Problem can be solved using standard optimization packages.

Multiple classes of data

The SVM is a binary classifier. How can we classify data with K>2 classes?

The SVM is a binary classifier. How can we classify data with $K>2\ {\rm classes}?$

• One versus all:(or one versus the rest) Fit the model to separate each class against the remaining classes. Label a new point x according to the model for which $x^T\beta + \beta_0$ is the largest.



Need to fit the model K times.

Multiple classes of data (cont.)

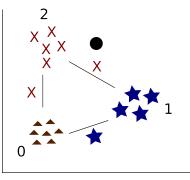
One versus one:

- Train a classifier for each possible **pair** of classes. Note: There are $\binom{K}{2} = K(K-1)/2$ such pairs.
- Classify a new points according to a majority vote: count the number of times the new point is assign to a given class, and pick the class with the largest number.

Multiple classes of data (cont.)

One versus one:

- Train a classifier for each possible **pair** of classes. Note: There are $\binom{K}{2} = K(K-1)/2$ such pairs.
- Classify a new points according to a majority vote: count the number of times the new point is assign to a given class, and pick the class with the largest number.



Need to fit the model $\binom{K}{2}$ times (computationally intensive).