
MATH 829: Introduction to Data Mining and
Analysis

Support vector machines

Dominique Guillot

Departments of Mathematical Sciences

University of Delaware

March 11, 2016

1/10



Hyperplanes

Recall:

A hyperplane H in V = Rn is a subspace of V of dimension

n− 1 (i.e., a subspace of codimension 1).
Each hyperplane is determined by a nonzero vector β ∈ Rn via

H = {x ∈ Rn : βTx = 0} = span(β)⊥.

An a�ne hyperplane H in Rn is a subset of the form

H = {x ∈ Rn : β0 + βTx = 0}

where β0 ∈ R, β ∈ Rn.

We often use the term �hyperplane� for �a�ne hyperplane�.
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Hyperplanes (cont.)

Let

H = {x ∈ Rn : β0 + βTx = 0}.

Note that for x0, x1 ∈ H,

βT (x0 − x1) = 0.

Thus β is perpendicular to H. It follows that for x ∈ Rn,

d(x,H) =
βT

‖β‖
(x− x0) =

β0 + βTx

‖β‖
.
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Separating hyperplane
Suppose we have binary data with labels {+1,−1}. We want to

separate data using an (a�ne) hyperplane.

ESL, Figure 4.14. (Orange = least-squares)

Classify using G(x) = sgn(xTβ + β0).

Separating hyperplane may not be unique.

Separating hyperplane may not exist (i.e., data may not be

separable).
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Margins

Uniqueness problem: when the data is separable, choose the

hyperplane to maximize the �margin� (the �no man's land�).

Data: (yi, xi) ∈ {+1,−1} × Rp (i = 1, . . . , n).
Suppose β0 + βTx is a separating hyperplane with ‖β‖ = 1.
Note that:

yi(x
T
i β + β0) > 0⇒ Correct classi�cation

yi(x
T
i β + β0) < 0⇒ Incorrect classi�cation

Also, |yi(xTi β + β0)| = distance between x and hyperplane (since

‖β‖ = 1).
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Margins (cont.)

Thus, if the data is separable, we can solve

max
β0,β∈Rp,‖β‖=1

M

subject to yi(x
T
i β + β0) ≥M (i = 1, . . . , n).

We will transform the problem into a usual form used in convex

optimization.

We can remove ‖β‖ = 1 by replacing the constraint by

1

‖β‖
yi(x

T
i β+β0) ≥M, or equivalently, yi(x

T
i β+β0) ≥M‖β‖.

We can always rescale (β, β0) so that ‖β‖ = 1/M . Our problem is

therefore equivalent to

min
β0,β∈Rp

1

2
‖β‖2

subject to yi(x
T
i β + β0) ≥ 1 (i = 1, . . . , n).

We now recognize the problem as a convex optimization problem

with a quadratic objective, and linear inequality constraints.
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Support vector machines

The previous problem works well when the data is separable.

What happens if there is no way to �nd a margin?

We allow some points to be on the wrong side of the margin, but

keep control on the error. We replace yi(x
T
i β + β0) ≥M by

yi(x
T
i β + β0) ≥M(1− ξi), ξi ≥ 0,

and add the constraint
n∑
i=1

ξi ≤ C for some �xed constant C > 0.

The problem becomes:

max
β0,β∈Rp,‖β‖=1

M

subject to yi(x
T
i β + β0) ≥M(1− ξi)

ξi ≥ 0,

n∑
i=1

ξi ≤ C.
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Support vector machines (cont.)

As before, we can transform the problem into its �normal� form:

min
β0,β

1

2
‖β‖2

subject to yi(x
T
i β + β0) ≥ 1− ξi

ξi ≥ 0,
n∑
i=1

ξi ≤ C.

Problem can be solved using standard optimization packages.
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Multiple classes of data

The SVM is a binary classi�er. How can we classify data with

K > 2 classes?

One versus all:(or one versus the rest) Fit the model to separate

each class against the remaining classes. Label a new point x
according to the model for which xTβ + β0 is the largest.

Need to �t the model K times.
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Multiple classes of data (cont.)

One versus one:
1 Train a classi�er for each possible pair of classes.

Note: There are
(
K
2

)
= K(K − 1)/2 such pairs.

2 Classify a new points according to a majority vote: count the

number of times the new point is assign to a given class, and

pick the class with the largest number.

Need to �t the model
(
K
2

)
times (computationally intensive).
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