MATH 829: Introduction to Data Mining and Analysis Support vector machines and kernels

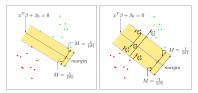
Dominique Guillot

Departments of Mathematical Sciences University of Delaware

March 14, 2016

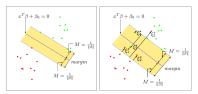
Separating sets: mapping the features

We saw in the previous lecture how support vector machines provide a robust way of finding a separating hyperplane:



Separating sets: mapping the features

We saw in the previous lecture how support vector machines provide a robust way of finding a separating hyperplane:



What if the data is not separable? Can map into a high-dimensional space.



Consider the problem:

$$\min_{x \in \mathcal{D} \subset \mathbb{R}^n} \quad f_0(x)$$
subject to
$$f_i(x) \le 0, \qquad i = 1, \dots, m$$

$$h_i(x) = 0, \qquad i = 1, \dots, p.$$

Denote by p^{\star} the optimal value of the problem.

Consider the problem:

$$\min_{x \in \mathcal{D} \subset \mathbb{R}^n} \quad f_0(x)$$
subject to $f_i(x) \le 0, \qquad i = 1, \dots, m$

$$h_i(x) = 0, \qquad i = 1, \dots, p.$$

Denote by p^{\star} the optimal value of the problem.

Lagrangian: $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x, \lambda, \nu) := f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x).$$

Consider the problem:

$$\min_{x \in \mathcal{D} \subset \mathbb{R}^n} \quad f_0(x)$$
subject to $f_i(x) \le 0, \qquad i = 1, \dots, m$

$$h_i(x) = 0, \qquad i = 1, \dots, p.$$

Denote by p^{\star} the optimal value of the problem.

Lagrangian: $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x, \lambda, \nu) := f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x).$$

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda, \nu) := \inf_{x \in \mathcal{D}} L(x, \lambda, \nu).$$

Consider the problem:

$$\min_{x \in \mathcal{D} \subset \mathbb{R}^n} \quad f_0(x)$$
subject to
$$f_i(x) \le 0, \qquad i = 1, \dots, m$$

$$h_i(x) = 0, \qquad i = 1, \dots, p.$$

Denote by p^* the optimal value of the problem.

Lagrangian: $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x, \lambda, \nu) := f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x).$$

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda, \nu) := \inf_{x \in \mathcal{D}} L(x, \lambda, \nu).$$

Claim: for every $\lambda \geq 0$,

$$g(\lambda, \nu) \le p^*$$
.

Dual problem:

$$\max_{\lambda \in \mathbb{R}^m, \ \nu \in \mathbb{R}^p} g(\lambda, \nu)$$

subject to $\lambda \ge 0$.

Dual problem:

$$\max_{\lambda \in \mathbb{R}^m, \ \nu \in \mathbb{R}^p} g(\lambda, \nu)$$

subject to $\lambda \ge 0$.

Denote by d^\star the optimal value of the dual problem. Clearly

$$d^{\star} \leq p^{\star}$$
 (weak duality).

Dual problem:

$$\max_{\lambda \in \mathbb{R}^m, \ \nu \in \mathbb{R}^p} g(\lambda, \nu)$$

subject to $\lambda \ge 0$.

Denote by d^\star the optimal value of the dual problem. Clearly

$$d^{\star} \leq p^{\star}$$
 (weak duality).

Strong duality: $d^* = p^*$.

- Does not hold in general.
- Usually holds for convex problems.
- (See e.g. Slater's constraint qualification).

The kernel trick

Recall that SVM solves:

$$\min_{\beta_0, \beta, \xi} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i$$
subject to $y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i$
$$\xi_i \ge 0.$$

The kernel trick

Recall that SVM solves:

$$\min_{\beta_0, \beta, \xi} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i$$
subject to $y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i$
 $\xi_i \ge 0.$

The associated Lagrangian is

$$L_P = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i [y_i(x_i^T \beta + \beta_0) - (1 - \xi_i)] - \sum_{i=1}^n \mu_i \xi_i,$$

which we minimize w.r.t. β, β_0, ξ .

The kernel trick

Recall that SVM solves:

$$\min_{\beta_0, \beta, \xi} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i$$
subject to $y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i$
$$\xi_i \ge 0.$$

The associated Lagrangian is

$$L_P = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i [y_i(x_i^T \beta + \beta_0) - (1 - \xi_i)] - \sum_{i=1}^n \mu_i \xi_i,$$

which we minimize w.r.t. β , β_0 , ξ . Setting the respective derivatives to 0, we obtain:

$$\beta = \sum_{i=1}^{n} \alpha_i y_i x_i, \quad 0 = \sum_{i=1}^{n} \alpha_i y_i, \quad \alpha_i = C - \mu_i \quad (i = 1, \dots, n).$$

Substituting into L_P , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

Substituting into L_P , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

The function L_D provides a lower bound on the original objective function at any feasible point (weak duality).

Substituting into L_P , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

The function L_D provides a lower bound on the original objective function at any feasible point (weak duality).

The solution of the original SVM problem can be obtained by maximizing L_D under the previous constraints (strong duality).

Substituting into L_P , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

The function L_D provides a lower bound on the original objective function at any feasible point (weak duality).

The solution of the original SVM problem can be obtained by maximizing L_D under the previous constraints (strong duality).

Now suppose $h:\mathbb{R}^p \to \mathbb{R}^m$, transforming our features to

$$h(x_i) = (h_1(x_i), \dots, h_m(x_i)) \in \mathbb{R}^m.$$

Substituting into L_P , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

The function L_D provides a lower bound on the original objective function at any feasible point (weak duality).

The solution of the original SVM problem can be obtained by maximizing L_D under the previous constraints (strong duality).

Now suppose $h:\mathbb{R}^p \to \mathbb{R}^m$, transforming our features to

$$h(x_i) = (h_1(x_i), \dots, h_m(x_i)) \in \mathbb{R}^m.$$

The Lagrange dual function becomes:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{h}(\mathbf{x_i})^{\mathbf{T}} \mathbf{h}(\mathbf{x_j}).$$

Substituting into L_P , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

The function L_D provides a lower bound on the original objective function at any feasible point (weak duality).

The solution of the original SVM problem can be obtained by maximizing L_D under the previous constraints (strong duality).

Now suppose $h: \mathbb{R}^p \to \mathbb{R}^m$, transforming our features to

$$h(x_i) = (h_1(x_i), \dots, h_m(x_i)) \in \mathbb{R}^m.$$

The Lagrange dual function becomes:

$$L_D = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{h}(\mathbf{x_i})^{\mathbf{T}} \mathbf{h}(\mathbf{x_j}).$$

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$.

Important observation: L_D only depends on $\langle h(x_i), h(x_i) \rangle$.

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$.

In fact, we don't even need to specify h, we only need:

$$K(x, x') = \langle h(x), h(x') \rangle.$$

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$.

In fact, we don't even need to specify h, we only need:

$$K(x, x') = \langle h(x), h(x') \rangle.$$

Question: Given $K: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$, when can we guarantee that

$$K(x, x') = \langle h(x), h(x') \rangle$$

for some function h?

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$.

In fact, we don't even need to specify h, we only need:

$$K(x, x') = \langle h(x), h(x') \rangle.$$

Question: Given $K: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$, when can we guarantee that

$$K(x, x') = \langle h(x), h(x') \rangle$$

for some function h?

Observation: Suppose K has the desired form. Then, for $x_1, \ldots, x_N \in \mathbb{R}^p$, and $v_i := h(x_i)$,

$$(K(x_i, x_j)) = (\langle h(x_i), h(x_j) \rangle)$$

$$= (\langle v_i, v_j \rangle)$$

$$= V^T V, \quad \text{where } V = (v_1^T, \dots, v_N^T).$$

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$.

In fact, we don't even need to specify h, we only need:

$$K(x, x') = \langle h(x), h(x') \rangle.$$

Question: Given $K: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$, when can we guarantee that

$$K(x, x') = \langle h(x), h(x') \rangle$$

for some function h?

Observation: Suppose K has the desired form. Then, for $x_1, \ldots, x_N \in \mathbb{R}^p$, and $v_i := h(x_i)$,

$$(K(x_i, x_j)) = (\langle h(x_i), h(x_j) \rangle)$$

$$= (\langle v_i, v_j \rangle)$$

$$= V^T V, \quad \text{where } V = (v_1^T, \dots, v_N^T).$$

Conclusion: the matrix $(K(x_i, x_j))$ is positive semidefinite.

• Necessary condition to have $K(x,x')=\langle h(x),h(x')\rangle$:

$$(K(x_i, x_j))_{i,j=1}^N$$
 is psd

for any x_1, \ldots, x_N , and any $N \geq 1$.

• Necessary condition to have $K(x,x')=\langle h(x),h(x')\rangle$:

$$(K(x_i, x_j))_{i,j=1}^N$$
 is psd

for any x_1, \ldots, x_N , and any $N \geq 1$.

• Note also that K(x,x')=K(x',x) if $K(x,x')=\langle h(x),h(x')\rangle$.

• Necessary condition to have $K(x,x')=\langle h(x),h(x')\rangle$:

$$(K(x_i, x_j))_{i,j=1}^N$$
 is psd

for any x_1, \ldots, x_N , and any $N \geq 1$.

• Note also that K(x,x')=K(x',x) if $K(x,x')=\langle h(x),h(x')\rangle$.

Definition: Let \mathcal{X} be a set. A symmetric kernel $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is said to be a *positive (semi)definite kernel* if

$$(K(x_i, x_j))_{i,j=1}^N$$
 is positive (semi)definite

for all $x_1, \ldots, x_N \in \mathcal{X}$ and all $N \geq 1$.

• Necessary condition to have $K(x,x') = \langle h(x), h(x') \rangle$:

$$(K(x_i, x_j))_{i,j=1}^N$$
 is psd

for any x_1, \ldots, x_N , and any $N \geq 1$.

• Note also that K(x,x')=K(x',x) if $K(x,x')=\langle h(x),h(x')\rangle$.

Definition: Let \mathcal{X} be a set. A symmetric kernel $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is said to be a *positive (semi)definite kernel* if

$$(K(x_i, x_j))_{i,j=1}^N$$
 is positive (semi)definite

for all $x_1, \ldots, x_N \in \mathcal{X}$ and all $N \geq 1$.

• A reproducing kernel Hilbert space (RKHS) over a set \mathcal{X} is a Hilbert space \mathcal{H} of functions on \mathcal{X} such that for each $x \in \mathcal{X}$, there is a function $k_x \in \mathcal{H}$ such that

$$\langle f, k_x \rangle_{\mathcal{H}} = f(x) \qquad \forall f \in \mathcal{H}.$$

• Necessary condition to have $K(x,x') = \langle h(x), h(x') \rangle$:

$$(K(x_i, x_j))_{i,j=1}^N$$
 is psd

for any x_1, \ldots, x_N , and any $N \geq 1$.

• Note also that K(x,x')=K(x',x) if $K(x,x')=\langle h(x),h(x')\rangle$.

Definition: Let \mathcal{X} be a set. A symmetric kernel $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is said to be a *positive (semi)definite kernel* if

$$(K(x_i, x_j))_{i,j=1}^N$$
 is positive (semi)definite

for all $x_1, \ldots, x_N \in \mathcal{X}$ and all $N \geq 1$.

• A reproducing kernel Hilbert space (RKHS) over a set \mathcal{X} is a Hilbert space \mathcal{H} of functions on \mathcal{X} such that for each $x \in \mathcal{X}$, there is a function $k_x \in \mathcal{H}$ such that

$$\langle f, k_x \rangle_{\mathcal{H}} = f(x) \qquad \forall f \in \mathcal{H}.$$

Write $k(\cdot, x) := k_x(\cdot)$ (k =the reproducing kernel of \mathcal{H}).

One can show that $\mathcal H$ is a RKHS over $\mathcal X$ iff the evaluation functionals $\Lambda_x:\mathcal H\to\mathbb C$

$$f \mapsto \Lambda_x(f) = f(x)$$

are continuous on ${\cal H}$ (use Riesz's representation theorem).

One can show that $\mathcal H$ is a RKHS over $\mathcal X$ iff the evaluation functionals $\Lambda_x:\mathcal H\to\mathbb C$

$$f \mapsto \Lambda_x(f) = f(x)$$

are continuous on ${\cal H}$ (use Riesz's representation theorem).

Theorem: Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel. Then there exists a RKHS \mathcal{H}_k over \mathcal{X} such that

- $\bullet k(\cdot,x) \in \mathcal{H}_k \text{ for all } x \in \mathcal{X}.$
- ullet is a reproducing kernel on \mathcal{H}_k .

One can show that $\mathcal H$ is a RKHS over $\mathcal X$ iff the evaluation functionals $\Lambda_x:\mathcal H\to\mathbb C$

$$f \mapsto \Lambda_x(f) = f(x)$$

are continuous on \mathcal{H} (use Riesz's representation theorem).

Theorem: Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel. Then there exists a RKHS \mathcal{H}_k over \mathcal{X} such that

- 3 k is a reproducing kernel on \mathcal{H}_k .

Now, define $h: \mathcal{X} \to \mathcal{H}_k$ by

$$h(x) := k(\cdot, x).$$

Then

$$\langle h(x), h(x') \rangle_{\mathcal{H}_k} = \langle k(\cdot, x), k(\cdot, x') \rangle_{\mathcal{H}_k} = k(x, x').$$

One can show that $\mathcal H$ is a RKHS over $\mathcal X$ iff the evaluation functionals $\Lambda_x:\mathcal H\to\mathbb C$

$$f \mapsto \Lambda_x(f) = f(x)$$

are continuous on \mathcal{H} (use Riesz's representation theorem).

Theorem: Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel. Then there exists a RKHS \mathcal{H}_k over \mathcal{X} such that

- $\bullet k(\cdot, x) \in \mathcal{H}_k \text{ for all } x \in \mathcal{X}.$
- 3 k is a reproducing kernel on \mathcal{H}_k .

Now, define $h:\mathcal{X} \to \mathcal{H}_k$ by

$$h(x) := k(\cdot, x).$$

Then

$$\langle h(x), h(x') \rangle_{\mathcal{H}_k} = \langle k(\cdot, x), k(\cdot, x') \rangle_{\mathcal{H}_k} = k(x, x').$$

Moral: Positive definite kernels arise as $\langle h(x), h(x') \rangle_{\mathcal{H}}$.

Back to SVM

We can replace h by any positive definite kernel in the SVM problem:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{h}(\mathbf{x_i})^{\mathbf{T}} \mathbf{h}(\mathbf{x_j})$$
$$= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{K}(\mathbf{x_i}, \mathbf{x_j}).$$

Back to SVM

We can replace h by any positive definite kernel in the SVM problem:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{h}(\mathbf{x_i})^{\mathbf{T}} \mathbf{h}(\mathbf{x_j})$$
$$= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{K}(\mathbf{x_i}, \mathbf{x_j}).$$

Three popular choice in the SVM literature:

$$K(x,x') = e^{-\gamma \|x-x'\|_2^2}$$
 (Gaussian kernel)
 $K(x,x') = (1 + \langle x,x' \rangle)^d$ (d-th degree polynomial)
 $K(x,x') = \tanh(\kappa_1 \langle x,x' \rangle + \kappa_2)$ (Neural networks).

Properties of pd kernels:

- **1** If k_1, \ldots, k_n are pd, then $\sum_{i=1}^n \lambda_i k_i$ is pd for any $\lambda_1, \ldots, \lambda_n \geq 0$.
- ② If k_1, k_2 are pd, then k_1k_2 is pd (Schur product theorem).
- **3** If $(k_i)_{i\geq 1}$ are kernels, then $\lim k_i$ is a kernel (if the limit exists).

Exercise: Use the above properties to show that $e^{-\gamma \|x-x'\|_2^2}$ and $(1+\langle x,x'\rangle)^d$ are positive definite kernels.

Properties of pd kernels:

- ① If k_1, \ldots, k_n are pd, then $\sum_{i=1}^n \lambda_i k_i$ is pd for any $\lambda_1, \ldots, \lambda_n \geq 0$.
- ② If k_1, k_2 are pd, then k_1k_2 is pd (Schur product theorem).
- lacktriangledown If $(k_i)_{i\geq 1}$ are kernels, then $\lim k_i$ is a kernel (if the limit exists).

Exercise: Use the above properties to show that $e^{-\gamma \|x-x'\|_2^2}$ and $(1+\langle x,x'\rangle)^d$ are positive definite kernels.

Definition: A function $h: \mathbb{R}^p \to \mathbb{R}$ is said to be *positive definite* if

$$K(x, x') := h(x - x')$$

is a positive definite kernel.

Properties of pd kernels:

- If k_1, \ldots, k_n are pd, then $\sum_{i=1}^n \lambda_i k_i$ is pd for any $\lambda_1, \ldots, \lambda_n \geq 0$.
- ② If k_1, k_2 are pd, then $k_1 k_2$ is pd (Schur product theorem).
- ullet If $(k_i)_{i\geq 1}$ are kernels, then $\lim k_i$ is a kernel (if the limit exists).

Exercise: Use the above properties to show that $e^{-\gamma \|x-x'\|_2^2}$ and $(1+\langle x,x'\rangle)^d$ are positive definite kernels.

Definition: A function $h: \mathbb{R}^p \to \mathbb{R}$ is said to be *positive definite* if

$$K(x, x') := h(x - x')$$

is a positive definite kernel.

P.d. functions thus provide a way of constructing pd kernels.

Properties of pd kernels:

- **1** If k_1, \ldots, k_n are pd, then $\sum_{i=1}^n \lambda_i k_i$ is pd for any $\lambda_1, \ldots, \lambda_n \geq 0$.
- ② If k_1, k_2 are pd, then k_1k_2 is pd (Schur product theorem).
- **3** If $(k_i)_{i>1}$ are kernels, then $\lim k_i$ is a kernel (if the limit exists).

Exercise: Use the above properties to show that $e^{-\gamma \|x-x'\|_2^2}$ and $(1+\langle x,x'\rangle)^d$ are positive definite kernels.

Definition: A function $h: \mathbb{R}^p \to \mathbb{R}$ is said to be *positive definite* if

$$K(x, x') := h(x - x')$$

is a positive definite kernel.

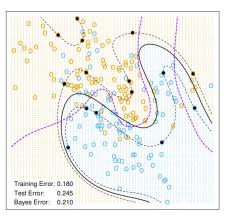
P.d. functions thus provide a way of constructing pd kernels.

Theorem: (Bochner) A continuous function $h: \mathbb{R}^p \to \mathbb{C}$ is positive definite if and only if

$$h(x) = \int_{\mathbb{R}^p} e^{-i\langle x, \omega \rangle} \ d\mu(\omega),$$

for some finite nonnegative Borel measure on \mathbb{R}^p .

Example: decision function



ESL, Figure 12.3 (solid black line = decision boundary, dotted line = margin).