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Transforming data

Very often the relationship between variables is not linear.

We saw before that transformations of the features can be used.

If hm : Rp → R, then we can use the model

f(X) =

M∑
m=1

βmhm(X).

Common transformations:

1 hm(X) = Xm (Usual linear regression).

2 hm(X) = X2
j or hm(X) = XjXk (Taylor polynomials).

3 hm(X) = log(Xj),
√
Xj .

4 hm(X) = I(Lm ≤ Xk < Um) (Indicator functions in some

intervals).

Note:

Need a large sample size to include many functions.

Risk of over-�tting when including too many functions.
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Splines

Splines are piecewise polynomials with a given number of

continuous derivatives.

For example, cubic splines are degree 3 polynomials pasted together

to get 2 continuous derivatives.
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Splines (cont.)

More generally, given knots t0 < t1 < · · · < tk, a spline of degree n
is a piecewise polynomial

S(x) :=


S0(x) t0 ≤ x ≤ t1
S1(x) t1 ≤ x ≤ t2
...

Sk−1(x) tk−1 ≤ x ≤ tk

such that

1 Si(x) is a polynomial of degree n.

2 S(x) is n− 1 times continuously di�erentiable.

Most commonly used value is n = 3 (cubic splines).

Said to be the smallest n for which it is impossible to detect the

location of the knots by eye.

A natural cubic spline imposes the supplementary conditions that

the spline is linear beyond the boundary knots.
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Basis for cubic splines

Cubic splines basis: With 2 knots ξ1, ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)3+,
h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)3+.

More generally, with M knots, add (X − ξ3)3+, . . . , (X − ξM )3+.

Natural cubic splines basis: With M knots

N1(X) = 1, N2(X) = X, Nk+2(X) = dk(X)− dM−1(x),

where

dk(X) =
(X − ξk)3+ − (X − ξM )3+

ξM − ξk
.

Can include spline basis in linear regression.

Not always obvious how to choose the knots.

Natural splines can be used to avoid the erratic behavior of

polynomials beyond the knots.
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Example: Phoneme recognition

Example: Phoneme Recognition (ESL, Example 5.2.3)

15 examples each of the phonemes �aa� and �ao�

sampled from a total of 695 �aa�s and 1022 �ao�s.

X = X(f)
f = frequency.

log
P (aa|X)

P (ao|X)
=

256∑
i=1

X(fi)βi

= XTβ.
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Phoneme recognition (cont.)

Logistic regression coe�cients, and smoothed version with natural cubic splines.

β(f) =

M∑
i=1

hm(f)θm = Hθ,

where H is a p×M matrix of spline functions.

Now, note that

XTβ = XTHθ.

Letting x∗ = HTx, we can therefore �t the logistic regression on

the smoothed inputs.
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Preprocessing data

In the previous example, we �tted a logistic regression to

transformed inputs.

Non-linear transformations are very useful for preprocessing

data.

Powerful method for improving the performance of a learning

algorithm.
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Smoothing splines

Splines can be very useful.

Problem: How to choose the knots in an optimal way?

Smoothing splines avoid this problem.

Smoothing splines: Find a function f ∈ C2 the minimizes

RSS(f, λ) :=

n∑
i=1

(yi − f(xi))2 + λ

∫
f ′′(t)2 dt (λ > 0).

First term controls closeness to data.

Second term controls curvature of the function.

Note:

If λ = 0: any function that interpolates the data works.

As λ =∞: least squares �t.
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Smoothing splines (cont)

To compute a smoothing spline, we need to optimize on an

in�nite dimensional space of functions.

Remarkably, it can be shown that the problem has an explicit,

�nite-dimensional, unique minimizer which is a natural cubic

spline with knots at the unique values of the xi , i = 1, . . . , N .

(See next homework).

The penalty term translates to a penalty on the spline

coe�cients, which are shrunk some of the way toward the

linear �t.
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Nonparametric logistic regression

Consider the logistic regression problem with a binary output.

log
P (Y = 1|X = x)

P (Y = 0|X = x)
= f(x).

Equivalently,

P (Y = 1|X = x) =
ef(x)

1 + ef(x)
.

Before, we used a linear model for f , and chose the coe�cients

using maximum likelihood.

Consider the penalized log-likelihood criterion:

l(f ;λ) =
n∑

i=1

[yi log p(xi) + (1− yi) log(1− p(xi))]−
1

2
λ

∫
f ′′(t) dt

=
n∑

i=1

[yif(xi)− log(1 + ef(xi))]− 1

2
λ

∫
f ′′(t) dt.

One can show that the optimal f is a natural spline with knots at

the unique xis (see ESL for more details).
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