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Motivation

Motivation:

A (global) linear model may not be appropriate for some data.

However, a linear model may be appropriate locally.

We now explore how one can �t a di�erent but simple model

separately at each query point.

As we will see, this can be naturally done, without signi�cantly

increasing the number of parameters to estimate.

We will use local information to �t each local linear model.

Localization is achieved via a weighting function (kernel)

K(x, xi), or a parametric family of kernels Kλ(x, xi) for

λ ∈ Λ.
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k-nearest-neighbor

Recall the k-nearest-neighbor average

f̂(x) = Ave(yi : xi ∈ Nk(x))

approximates the regression function E(Y |X = x).

ESL, Figure 6.1.

As x moves from left to right, Nk(x) changes. This results in

discontinuities in f̂(x). A weighed average naturally solves this

problem.
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Kernel smoothers

Given a function K : Rp × Rp → [0,∞), we can construct the

estimator:

f̂(x) =

∑n
i=1K(x, xi)yi∑n
i=1K(x, xi)

.

We usually:

Use a kernel that decays at some rate (to give more weight to

local observations).

Work with a parametrized family of kernels Kλ(x, y), where λ
controls the window size.

Known as the Nadaraya�Watson estimator.

For example, the Epanechnikov quadratic kernel is given by

Kλ(x, x′) = D

(
|x− x′|
λ

)
,

where

D(t) :=

{
3
4(1− t2) if |t| ≤ 1,

0 otherwise.

Resulting prediction function is continuous.
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Kernel smoothers (cont.)

A few remarks:

1 More generally, one can use an adaptive neighborhood: let

h(xi) determine the width of the neighborhood at xi. Then
one can use

K(x, x′) = D

(
|x− x′|
h(x)

)
.

2 Generally, there are only a few parameters to choose (e.g. only

λ in the previous example).

3 The models require little or no training; all the work gets done

at evaluation time.

4 The model, however, is the entire training data set.

5 Non-parametric approach.
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Local linear regression

Kernel smoothers can have poor performance near the boundary of

the domain or in regions with very little observations.

ESL, Figure 6.3.

Locally weighted regression solves a separate weighted least squares

problem at each target point x0:

min
α(x0),β(x0)

n∑
i=1

K(x0, xi)[y − α(x0)− β(x0)xi]
2.

The estimate is then
f̂(x0) = α(x0) + β(x0)x0.
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Local linear regression (cont.)

Obtaining the solution is not harder than usual.

More generally, note that for y ∈ Rn, X ∈ Rn×p, and
w = (wi) ∈ (0,∞)n,

min
β∈Rp

n∑
i=1

wi(yi − xTi β)2 ⇔ min
β∈Rp

n∑
i=1

(ỹi − x̃Ti β)2,

where ỹi :=
√
wiyi and x̃i =

√
wixi.

Letting W = diag(w1, . . . , wn), we have

ỹ =
√
Wy, X̃ =

√
WX.

So the solution is:

β̂ = (X̃T X̃)−1X̃ỹ = (XTWX)−1XTWy.
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Local linear regression (cont.)

In the case of local linear regression, the weights are:

wi = wi(x0) = Kλ(x0, xi), (i = 1, . . . , n).

The prediction at x0 becomes:

f̂(x0) = xT0 (XTW (x0)X)−1XTW (x0)y

=

n∑
i=1

li(x0)yi.

Note: We need to solve a linear regression problem at every x0
where the estimator has to be evaluated.

Remark:
1 Estimate is still linear in y.
2 The weights li(x0) combine the weighting kernels Kλ(x0, xi),

and the least squares operations.
3 Same ideas can be applied to local regression with other

function bases (e.g. local polynomial regression, see ESL

6.1.2).
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Local linear regression - higher dimension

The same ideas apply to higher dimension. Given

Kλ : Rp × Rp → [0,∞), one can solve:

minβ(x0)∈Rp

∑n
i=1K(x0, xi)[yi − xTi β]2.

For example, one can use a radial Epanechnikov kernel:

Kλ(x, x′) = D
(
‖x−x′‖

λ

)
.

(Note: better to scale predictors)

ESL, Figure 6.8. Local linear regression smoothing for velocity of a galaxy data.
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Structured local linear regression models

When the sample size is small compared to the dimension,

local linear regression may not perform well.

As we did before, we can impose more constraints on the

model (i.e., add more structure).

For example, we can weight dimensions di�erently.

Structured kernels: use a positive semide�nite matrix A to weight

the coordinates:

Kλ,A(x, x′) = D

(
(x− x′)TA(x− x′)

λ

)
.

For example, A could be a diagonal matrix that assigns di�erent

weights to di�erent dimensions.

Structured Regression Functions, Local Likelihood methods, etc.

(see ESL).
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