MATH 829: Introduction to Data Mining and Analysis Kernel density estimation and classification

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

March 23, 2016

• Suppose we have observations $X \in \mathbb{R}^{n \times p}$ and $Y \in \{1, \dots, K\}^n$ obtained at random.

• Suppose we have observations $X \in \mathbb{R}^{n \times p}$ and $Y \in \{1, \dots, K\}^n$ obtained at random.

• Before, we built classification models based on P(Y = i | X = x), i.e., based on the conditional probability of Y = i given X = x.

• Suppose we have observations $X \in \mathbb{R}^{n \times p}$ and $Y \in \{1, \dots, K\}^n$ obtained at random.

• Before, we built classification models based on P(Y = i | X = x), i.e., based on the conditional probability of Y = i given X = x.

• Using Bayes' rule, we can obtain P(Y = i | X = x) from P(X = x | Y = i) and P(Y = i):

$$\begin{split} P(Y = i | X = x) &= \frac{P(X = x | Y = i) P(Y = i)}{P(X = x)} \\ &= \frac{P(X = x | Y = i) P(Y = i)}{\sum_{j=1}^{K} P(X = x | Y = j) P(Y = j)} \\ &\approx \frac{P(X = x | Y = i) \hat{\pi}_i}{\sum_{j=1}^{K} P(X = x | Y = j) \hat{\pi}_j}, \end{split}$$

where $\hat{\pi}_j =$ proportion of observations in category j.

• Suppose we have observations $X \in \mathbb{R}^{n \times p}$ and $Y \in \{1, \dots, K\}^n$ obtained at random.

• Before, we built classification models based on P(Y = i | X = x), i.e., based on the conditional probability of Y = i given X = x.

• Using Bayes' rule, we can obtain P(Y = i | X = x) from P(X = x | Y = i) and P(Y = i):

$$\begin{split} P(Y = i | X = x) &= \frac{P(X = x | Y = i) P(Y = i)}{P(X = x)} \\ &= \frac{P(X = x | Y = i) P(Y = i)}{\sum_{j=1}^{K} P(X = x | Y = j) P(Y = j)} \\ &\approx \frac{P(X = x | Y = i) \hat{\pi}_i}{\sum_{j=1}^{K} P(X = x | Y = j) \hat{\pi}_j}, \end{split}$$

where $\hat{\pi}_j =$ proportion of observations in category j.

Question: How can we estimate the density of a distribution? (e.g. $P(X=x|Y=j)\dots)$

• More generally, suppose x_1, \ldots, x_n is a random sample drawn from a probability density $f_X(x)$.

• More generally, suppose x_1, \ldots, x_n is a random sample drawn from a probability density $f_X(x)$.

• The nonparametric density estimation (NPDE) problem is to estimate f_X without specifying a formal parametric structure.

• More generally, suppose x_1, \ldots, x_n is a random sample drawn from a probability density $f_X(x)$.

• The nonparametric density estimation (NPDE) problem is to estimate f_X without specifying a formal parametric structure. • A bona fide estimator of the density of a continuous random vector $X \in \mathbb{R}^p$ is a function $f : \mathbb{R}^p \to [0, \infty)$ such that

$$\int_{\mathbb{R}^p} f(x) \, dx = 1.$$

• More generally, suppose x_1, \ldots, x_n is a random sample drawn from a probability density $f_X(x)$.

• The nonparametric density estimation (NPDE) problem is to estimate f_X without specifying a formal parametric structure. • A bona fide estimator of the density of a continuous random vector $X \in \mathbb{R}^p$ is a function $f : \mathbb{R}^p \to [0, \infty)$ such that

$$\int_{\mathbb{R}^p} f(x) \, dx = 1.$$

• Example: Histogram estimation of the density

$$\hat{f}_X(x_0) = \frac{\#\{i : x_i \in N_\lambda(x_0)\}}{n\lambda},$$

where $N_{\lambda}(x_0)$ denotes a neighborhood of x_0 of width λ .

• More generally, suppose x_1, \ldots, x_n is a random sample drawn from a probability density $f_X(x)$.

The nonparametric density estimation (NPDE) problem is to estimate f_X without specifying a formal parametric structure.
A bona fide estimator of the density of a continuous random vector X ∈ ℝ^p is a function f : ℝ^p → [0, ∞) such that

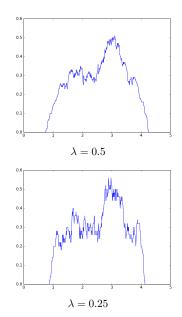
$$\int_{\mathbb{R}^p} f(x) \, dx = 1.$$

• Example: Histogram estimation of the density

$$\hat{f}_X(x_0) = \frac{\#\{i : x_i \in N_\lambda(x_0)\}}{n\lambda},$$

where $N_{\lambda}(x_0)$ denotes a neighborhood of x_0 of width λ . Exercise: Verify that $\hat{f}_X(x_0)$ is a *bona fide* estimator.

```
import numpy as np
N = 200
X = 1+3*np.random.rand(N)
def density_hist(x, l, X):
    nb = ((X \ge x-1/2.0))
           (X <= x+1/2.0).sum()
         &
    n = X.shape[0]
    y = nb/(n*1)
    řeturn y
nb_pts = 1000
x = np.linspace(0,5,nb_pts)
y = np.zeros(nb_pts)
1 = 0.25
for i in range(nb_pts):
    y[i] = density_hist(x[i],1,X)
import matplotlib.pyplot as plt
plt.plot(x,y)
plt.show()
```



• We generally prefer to use a *smooth* estimate of the density:

$$\hat{f}_X(x_0) = \frac{1}{C} \sum_{i=1}^n K_\lambda(x_0, x_i),$$

where $K_{\lambda}(\cdot, \cdot)$ is some kernel, and C is a normalization constant.

• We generally prefer to use a *smooth* estimate of the density:

$$\hat{f}_X(x_0) = \frac{1}{C} \sum_{i=1}^n K_\lambda(x_0, x_i),$$

where $K_{\lambda}(\cdot, \cdot)$ is some kernel, and C is a normalization constant.

• A popular choice for K_{λ} is the *Gaussian kernel*:

$$K_{\lambda}(x_0, x) = \phi\left(\frac{|x - x_0|}{\lambda}\right) \qquad (\lambda > 0),$$

where $\phi(x)=\frac{1}{2\pi}e^{-x^2/2}$ is the N(0,1) density. In that case,

$$\hat{f}_X(x_0) = \frac{1}{n\lambda} \sum_{i=1}^n K_\lambda(x_0, x_i).$$

Kernel Function	K(x)
Rectangular	$\tfrac{1}{2}I_{[x \leq 1]}$
Triangular	$(1- x)I_{[x \leq 1]}$
Bartlett-Epanechnikov	$\frac{3}{4}(1-x^2)I_{[x \leq 1]}$
Biweight	$\frac{15}{16}(1-x^2)^2 I_{[x \leq 1]}$
Triweight	$\frac{35}{32}(1-x^2)^3 I_{[x \leq 1]}$
Cosine	$\frac{\pi}{4}\cos(\frac{\pi}{2}x)I_{[x \leq 1]}$

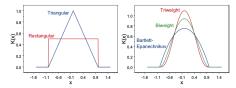
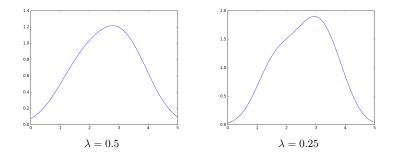


FIGURE 4.5. Univariate kernel functions with compact support. Left panel: reatingular and triangular kernels. Right panel: Bartlett– Epanechnikov, biweight, and triweight kernels.

Source: Izenman, Modern multivariate statistical techniques.

def density_gauss(x, 1, X): n = np.double(X.shape) y = np.exp(-1*(x-X)**2/(2*1)).sum()/(n*1) return y



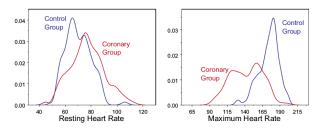
Application: comparing data from two independent samples (Izenman, 2013).

- 117 coronary heart disease patients (the *coronary group*).
- 117 age-matched healthy men (the control group).
- Heart rates recorded at rest and at their maximum after a series of exercises.
- A statistic used to monitor activity of the heart is the change in heart rate from a resting state to that after exercise.

Application: comparing data from two independent samples (Izenman, 2013).

- 117 coronary heart disease patients (the coronary group).
- 117 age-matched healthy men (the control group).
- Heart rates recorded at rest and at their maximum after a series of exercises.
- A statistic used to monitor activity of the heart is the change in heart rate from a resting state to that after exercise.

Kernel density estimate:



Example: 1872 Hidalgo Postage Stamps of Mexico

Example: (Izenman, 2013).

- 485 measurements of the thickness of the paper on which the 1872 Hidalgo Issue postage stamps of Mexico were printed.
- Stamps were deliberately printed on a mixture of paper types, each having its own thickness characteristics due to poor quality control in paper manufacture.
- Today, the thickness of the paper on which this particular stamp image is printed is a primary factor in determining its price.

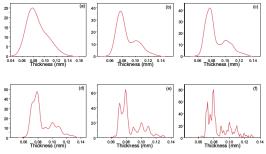
Example: 1872 Hidalgo Postage Stamps of Mexico

Example: (Izenman, 2013).

• 485 measurements of the thickness of the paper on which the 1872 Hidalgo Issue postage stamps of Mexico were printed.

• Stamps were deliberately printed on a mixture of paper types, each having its own thickness characteristics due to poor quality control in paper manufacture.

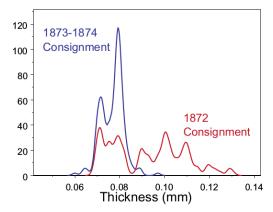
• Today, the thickness of the paper on which this particular stamp image is printed is a primary factor in determining its price.



Gaussian density estimate for different window sizes. (Source: Izenman, 2013)

Example: 1872 Hidalgo Postage Stamps of Mexico (cont.)

Every stamp from the 1872 Hidalgo Issue was overprinted with year-of-consignment information: there was an 1872 consignment (289 stamps) and an 1873-1874 consignment (196 stamps).



Gaussian density estimate for each consignment, window size = 0.0015. (Source: Izenman, 2013)

• The previous ideas naturally generalize to multivariate data.

- The previous ideas naturally generalize to multivariate data.
- Given $x_1, \ldots, x_n \in \mathbb{R}^p$, $x_0 \in \mathbb{R}^p$, and an invertible matrix H, we can use

$$\hat{f}_H(x_0) = \frac{1}{n \cdot \det H} \sum_{i=1}^n K(H^{-1}(x_0 - x_i))$$

- The previous ideas naturally generalize to multivariate data.
- Given $x_1, \ldots, x_n \in \mathbb{R}^p$, $x_0 \in \mathbb{R}^p$, and an invertible matrix H, we can use

$$\hat{f}_H(x_0) = \frac{1}{n \cdot \det H} \sum_{i=1}^n K(H^{-1}(x_0 - x_i))$$

Multiplicative kernels:

$$K(x) \propto f(x_1)f(x_2)\dots f(x_p)$$

• Spherical kernels:

 $K(x) \propto f(\|x\|).$

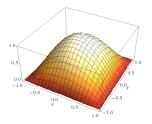
Recall that the *Epanechnikov* kernel is given by

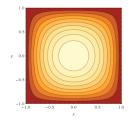
$$K_{\lambda}(x, x') = D\left(\frac{|x - x'|}{\lambda}\right),$$

where

$$D(t) := \begin{cases} \frac{3}{4}(1-t^2) & \text{if } |t| \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Multiplicative 2D version:





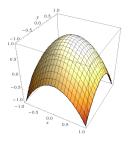
Recall that the *Epanechnikov* kernel is given by

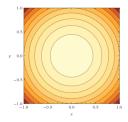
$$K_{\lambda}(x, x') = D\left(\frac{|x - x'|}{\lambda}\right),$$

where

$$D(t) := \begin{cases} \frac{3}{4}(1-t^2) & \text{if } |t| \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Spherical 2D version:



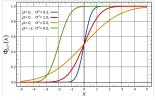


Statistical properties of density estimator

The empirical cdf: Let X be a (one-dimensional) random variable.

Recall that the cumulative distribution function (cdf) of X is

$$F_X(x) = P(X \le x).$$



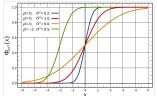
Normal cdf (source: wikipedia).

Statistical properties of density estimator

The empirical cdf: Let X be a (one-dimensional) random variable.

Recall that the cumulative distribution function (cdf) of X is

$$F_X(x) = P(X \le x).$$



The empirical cdf of a sample x_1, \ldots, x_n drawn from X is

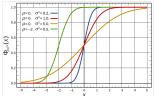
$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(-\infty,x]}(x_i).$$

Statistical properties of density estimator

The empirical cdf: Let X be a (one-dimensional) random variable.

Recall that the cumulative distribution function (cdf) of X is

$$F_X(x) = P(X \le x).$$



Normal cdf (source: wikipedia).

The empirical cdf of a sample x_1, \ldots, x_n drawn from X is

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(-\infty,x]}(x_i).$$

Theorem: (Glivenko-Cantelli) Let X_1, \ldots, X_n be iid random variables with cdf F. Let

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(-\infty,x]}(X_i).$$

Then

$$||F_n - F||_{\infty} = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \to 0$$
 almost surely.

Statistical properties of density estimator (cont.)

• The Glivenko-Cantelli theorem shows that cdfs can be recovered consistently using the empirical cdf.

Statistical properties of density estimator (cont.)

• The Glivenko-Cantelli theorem shows that cdfs can be recovered consistently using the empirical cdf.

• Unfortunately, the empirical cdf does not provide a good estimate of the pdf (puts a probability 0 between two observations).

Statistical properties of density estimator (cont.)

• The Glivenko-Cantelli theorem shows that cdfs can be recovered consistently using the empirical cdf.

• Unfortunately, the empirical cdf does not provide a good estimate of the pdf (puts a probability 0 between two observations).

Desirable properties of a density estimator: Let $\hat{f}_n(x)$ be an estimator obtained from an iid sample with density f(x), $x \in \mathbb{R}^p$. (Note: $\hat{f}_n(x)$ is a random variable.)

• Unbiasedness: $E(\hat{f}_n(x)) = f(x)$ for all $x \in \mathbb{R}^p$.

• The Glivenko-Cantelli theorem shows that cdfs can be recovered consistently using the empirical cdf.

• Unfortunately, the empirical cdf does not provide a good estimate of the pdf (puts a probability 0 between two observations).

Desirable properties of a density estimator: Let $\hat{f}_n(x)$ be an estimator obtained from an iid sample with density f(x), $x \in \mathbb{R}^p$. (Note: $\hat{f}_n(x)$ is a random variable.)

 Unbiasedness: E(f̂_n(x)) = f(x) for all x ∈ ℝ^p. It is known that no bona fide density estimator based upon a finite data set that is unbiased for all continuous densities can exist (Rosenblatt, 1956). As a result, people look at asymptotic unbiasedness. • The Glivenko-Cantelli theorem shows that cdfs can be recovered consistently using the empirical cdf.

• Unfortunately, the empirical cdf does not provide a good estimate of the pdf (puts a probability 0 between two observations).

Desirable properties of a density estimator: Let $\hat{f}_n(x)$ be an estimator obtained from an iid sample with density f(x), $x \in \mathbb{R}^p$. (Note: $\hat{f}_n(x)$ is a random variable.)

- Unbiasedness: $E(\hat{f}_n(x)) = f(x)$ for all $x \in \mathbb{R}^p$. It is known that **no** bona fide density estimator based upon a finite data set that is unbiased for all continuous densities can exist (Rosenblatt, 1956). As a result, people look at asymptotic unbiasedness.
- ② Consistency: Ability to recover f as $n \to \infty$. How to measure "closeness" between the densities?

Consistency

Important notions of consistency:

- Strong pointwise consistency: $\hat{f}_n(x) \to f(x)$ almost surely $\forall x \in \mathbb{R}^p$ as $n \to \infty$.
- **2** Pointwise consistency of *f* in *quadratic mean*:

$$MSE(x) = E\left((\hat{f}_n(x) - f(x)^2)\right) \to 0 \quad \forall x \in \mathbb{R}^p \text{ as } n \to \infty.$$

③ Consistency of f in mean integrated squared error (MISE):

$$\text{MISE} = E\left(\int_{\mathbb{R}^p} (\hat{f}_n(x) - f(x))^2 \ dx\right) \to 0 \quad \text{ as } n \to \infty.$$

Consistency of f in mean integrated absolute error (MIAE):

MIAE =
$$E\left(\int_{\mathbb{R}^p} |\hat{f}_n(x) - f(x)| \, dx\right) \to 0$$
 as $n \to \infty$.

Consistency

Important notions of consistency:

- Strong pointwise consistency: $\hat{f}_n(x) \to f(x)$ almost surely $\forall x \in \mathbb{R}^p$ as $n \to \infty$.
- **2** Pointwise consistency of *f* in *quadratic mean*:

$$MSE(x) = E\left((\hat{f}_n(x) - f(x)^2)\right) \to 0 \quad \forall x \in \mathbb{R}^p \text{ as } n \to \infty.$$

③ Consistency of f in mean integrated squared error (MISE):

MISE =
$$E\left(\int_{\mathbb{R}^p} (\hat{f}_n(x) - f(x))^2 dx\right) \to 0$$
 as $n \to \infty$.

Consistency of f in mean integrated absolute error (MIAE):

MIAE =
$$E\left(\int_{\mathbb{R}^p} |\hat{f}_n(x) - f(x)| \, dx\right) \to 0$$
 as $n \to \infty$.

• Many other norms are used (e.g. Hellinger distance, etc.).

Suppose we use a kernel coming for a multivariate probability density function $K : \mathbb{R}^p \to [0, \infty)$:

 $\int_{\mathbb{R}^p} K(x) \, dx = 1.$

Suppose we use a kernel coming for a multivariate probability density function $K : \mathbb{R}^p \to [0, \infty)$:

$$\int_{\mathbb{R}^p} K(x) \, dx = 1.$$

In other words, we define:

$$K_{\lambda}(x,y):=K\left(rac{x-y}{\lambda}
ight),\qquad x,y\in\mathbb{R}^p,\lambda>0.$$
 (e.g. Gaussian kernel).

Suppose we use a kernel coming for a multivariate probability density function $K : \mathbb{R}^p \to [0, \infty)$:

$$\int_{\mathbb{R}^p} K(x) \ dx = 1.$$

In other words, we define:

$$K_{\lambda}(x,y) := K\left(\frac{x-y}{\lambda}\right), \qquad x,y \in \mathbb{R}^p, \lambda > 0.$$

(e.g. Gaussian kernel).

A remarkable result in density estimation is that the density estimator from this class of kernels is **always** consistent.

Suppose we use a kernel coming for a multivariate probability density function $K : \mathbb{R}^p \to [0, \infty)$:

$$\int_{\mathbb{R}^p} K(x) \, dx = 1.$$

In other words, we define:

$$K_{\lambda}(x,y) := K\left(\frac{x-y}{\lambda}\right), \qquad x, y \in \mathbb{R}^p, \lambda > 0.$$

(e.g. Gaussian kernel).

A remarkable result in density estimation is that the density estimator from this class of kernels is **always** consistent. **Theorem:**(Devroye, 1983; Devroye and Penrod, 1984) Let \hat{f}_n be a kernel estimator as above with window size λ_n , obtained from an iid sample of size n. Suppose $\lambda_n \to 0$ and $n\lambda_n \to \infty$. Then

• \hat{f}_n is pointwise strongly consistent.

2 Moreover, in the univariate case, $MIAE = O(n^{-2/5})$.

Explicit formulas for the asymptotically optimal window size λ_n are also known.