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Using Bayes theorem for classi�cation

Suppose we have observations X ∈ Rn×p and Y ∈ {1, . . . ,K}n
obtained at random.

Before, we built classi�cation models based on P (Y = i|X = x),
i.e., based on the conditional probability of Y = i given X = x.

Using Bayes' rule, we can obtain P (Y = i|X = x) from
P (X = x|Y = i) and P (Y = i):

P (Y = i|X = x) =
P (X = x|Y = i)P (Y = i)

P (X = x)

=
P (X = x|Y = i)P (Y = i)∑K
j=1 P (X = x|Y = j)P (Y = j)

≈ P (X = x|Y = i)π̂i∑K
j=1 P (X = x|Y = j)π̂j

,

where π̂j = proportion of observations in category j.

Question: How can we estimate the density of a distribution? (e.g.

P (X = x|Y = j). . . )
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Density estimation

More generally, suppose x1, . . . , xn is a random sample drawn

from a probability density fX(x).

The nonparametric density estimation (NPDE) problem is to

estimate fX without specifying a formal parametric structure.

A bona �de estimator of the density of a continuous random

vector X ∈ Rp is a function f : Rp → [0,∞) such that∫
Rp

f(x) dx = 1.

Example: Histogram estimation of the density

f̂X(x0) =
#{i : xi ∈ Nλ(x0)}

nλ
,

where Nλ(x0) denotes a neighborhood of x0 of width λ.

Exercise: Verify that f̂X(x0) is a bona �de estimator.
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Example

import numpy as np

N = 200

X = 1+3*np.random.rand(N)

def density_hist(x, l, X):
nb = ((X >= x-l/2.0)

& (X <= x+l/2.0)).sum()
n = X.shape[0]
y = nb/(n*l)
return y

nb_pts = 1000
x = np.linspace(0,5,nb_pts)
y = np.zeros(nb_pts)

l = 0.25

for i in range(nb_pts):
y[i] = density_hist(x[i],l,X)

import matplotlib.pyplot as plt

plt.plot(x,y)
plt.show()

λ = 0.5

λ = 0.25
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Kernel density

We generally prefer to use a smooth estimate of the density:

f̂X(x0) =
1

C

n∑
i=1

Kλ(x0, xi),

where Kλ(·, ·) is some kernel, and C is a normalization constant.

A popular choice for Kλ is the Gaussian kernel:

Kλ(x0, x) = φ

(
|x− x0|

λ

)
(λ > 0),

where φ(x) = 1
2πe
−x2/2 is the N(0, 1) density. In that case,

f̂X(x0) =
1

nλ

n∑
i=1

Kλ(x0, xi).
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Common kernels

Source: Izenman, Modern multivariate statistical techniques.
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Example

def density_gauss(x, l, X):
n = np.double(X.shape)
y = np.exp(-1*(x-X)**2/(2*l)).sum()/(n*l)
return y

λ = 0.5 λ = 0.25
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Example

Application: comparing data from two independent samples

(Izenman, 2013).

117 coronary heart disease patients (the coronary group).

117 age-matched healthy men (the control group).

Heart rates recorded at rest and at their maximum after a

series of exercises.

A statistic used to monitor activity of the heart is the change

in heart rate from a resting state to that after exercise.

Kernel density estimate:
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Example: 1872 Hidalgo Postage Stamps of Mexico

Example: (Izenman, 2013).

485 measurements of the thickness of the paper on which the

1872 Hidalgo Issue postage stamps of Mexico were printed.

Stamps were deliberately printed on a mixture of paper types,

each having its own thickness characteristics due to poor quality

control in paper manufacture.

Today, the thickness of the paper on which this particular stamp

image is printed is a primary factor in determining its price.

Gaussian density estimate for di�erent window sizes. (Source: Izenman, 2013)
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Example: 1872 Hidalgo Postage Stamps of Mexico (cont.)

Every stamp from the 1872 Hidalgo Issue was overprinted with

year-of-consignment information: there was an 1872 consignment

(289 stamps) and an 1873-1874 consignment (196 stamps).

Gaussian density estimate for each consignment, window size = 0.0015. (Source: Izenman, 2013)
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Multivariate generalization

The previous ideas naturally generalize to multivariate data.

Given x1, . . . , xn ∈ Rp, x0 ∈ Rp, and an invertible matrix H, we

can use

f̂H(x0) =
1

n · detH

n∑
i=1

K(H−1(x0 − xi))

Multiplicative kernels:

K(x) ∝ f(x1)f(x2) . . . f(xp)

Spherical kernels:

K(x) ∝ f(‖x‖).
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Examples

Recall that the Epanechnikov kernel is given by

Kλ(x, x
′) = D

(
|x− x′|
λ

)
,

where

D(t) :=

{
3
4(1− t

2) if |t| ≤ 1,

0 otherwise.

Multiplicative 2D version:
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Statistical properties of density estimator

The empirical cdf: Let X be a (one-dimensional) random variable.

Recall that the cumulative distri-

bution function (cdf) of X is

FX(x) = P (X ≤ x).
Normal cdf (source: wikipedia).

The empirical cdf of a sample x1, . . . , xn drawn from X is

F̂n(x) =
1

n

n∑
i=1

1(−∞,x](xi).

Theorem: (Glivenko�Cantelli) Let X1, . . . , Xn be iid random

variables with cdf F . Let

F̂n(x) =
1

n

n∑
i=1

1(−∞,x](Xi).

Then

‖Fn − F‖∞ = sup
x∈R
|Fn(x)− F (x)| → 0 almost surely.
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Statistical properties of density estimator (cont.)

The Glivenko�Cantelli theorem shows that cdfs can be recovered

consistently using the empirical cdf.

Unfortunately, the empirical cdf does not provide a good estimate

of the pdf (puts a probability 0 between two observations).

Desirable properties of a density estimator: Let f̂n(x) be an

estimator obtained from an iid sample with density f(x), x ∈ Rp.
(Note: f̂n(x) is a random variable.)

1 Unbiasedness: E(f̂n(x)) = f(x) for all x ∈ Rp.
It is known that no bona �de density estimator based upon a

�nite data set that is unbiased for all continuous densities can

exist (Rosenblatt, 1956). As a result, people look at

asymptotic unbiasedness.

2 Consistency: Ability to recover f as n→∞. How to measure

�closeness� between the densities?
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Consistency

Important notions of consistency:

1 Strong pointwise consistency: f̂n(x)→ f(x) almost surely

∀x ∈ Rp as n→∞.

2 Pointwise consistency of f in quadratic mean:

MSE(x) = E
(
(f̂n(x)− f(x)2)

)
→ 0 ∀x ∈ Rp as n→∞.

3 Consistency of f in mean integrated squared error (MISE):

MISE = E

(∫
Rp

(f̂n(x)− f(x))2 dx
)
→ 0 as n→∞.

4 Consistency of f in mean integrated absolute error (MIAE):

MIAE = E

(∫
Rp

|f̂n(x)− f(x)| dx
)
→ 0 as n→∞.

Many other norms are used (e.g. Hellinger distance, etc.).
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Asymptotic results for kernels

Suppose we use a kernel coming for a multivariate probability

density function K : Rp → [0,∞):∫
Rp K(x) dx = 1.

In other words, we de�ne:

Kλ(x, y) := K
(x−y

λ

)
, x, y ∈ Rp, λ > 0.

(e.g. Gaussian kernel).

A remarkable result in density estimation is that the density

estimator from this class of kernels is always consistent.

Theorem:(Devroye, 1983; Devroye and Penrod, 1984)

Let f̂n be a kernel estimator as above with window size λn,
obtained from an iid sample of size n. Suppose λn → 0 and

nλn →∞. Then
1 f̂n is pointwise strongly consistent.
2 Moreover, in the univariate case, MIAE = O(n−2/5).

Explicit formulas for the asymptotically optimal window size λn are

also known.
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