MATH 829: Introduction to Data Mining and Analysis Principal component analysis

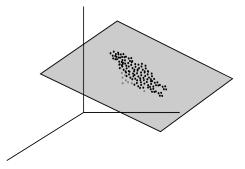
Dominique Guillot

Departments of Mathematical Sciences University of Delaware

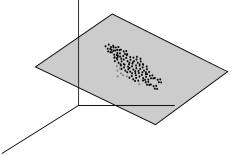
April 4, 2016

- High-dimensional data often has a low-rank structure.
- Most of the "action" may occur in a subspace of \mathbb{R}^p .

- High-dimensional data often has a low-rank structure.
- Most of the "action" may occur in a subspace of \mathbb{R}^p .

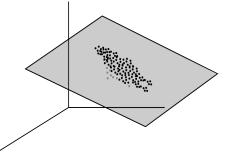


- High-dimensional data often has a low-rank structure.
- Most of the "action" may occur in a subspace of \mathbb{R}^p .



Problem: How can we discover low dimensional structures in data?

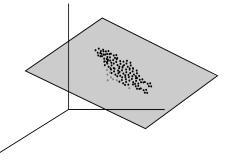
- High-dimensional data often has a low-rank structure.
- Most of the "action" may occur in a subspace of \mathbb{R}^p .



Problem: How can we discover low dimensional structures in data?

• Principal components analysis: construct projections of the data that capture most of the *variability* in the data.

- High-dimensional data often has a low-rank structure.
- Most of the "action" may occur in a subspace of \mathbb{R}^p .



Problem: How can we discover low dimensional structures in data?

- Principal components analysis: construct projections of the data that capture most of the *variability* in the data.
- Provides a low-rank approximation to the data.
- Can lead to a significant dimensionality reduction.

• Let $X \in \mathbb{R}^{n \times p}$ with rows $x_1, \ldots, x_n \in \mathbb{R}^p$. We think of X as n observations of a random vector $(X_1, \ldots, X_p) \in \mathbb{R}^p$.

• Let $X \in \mathbb{R}^{n \times p}$ with rows $x_1, \ldots, x_n \in \mathbb{R}^p$. We think of X as n observations of a random vector $(X_1, \ldots, X_p) \in \mathbb{R}^p$.

• Suppose each column has mean 0, i.e., $\sum_{i=1}^{n} x_i = \mathbf{0}_{1 \times p}$.

• Let $X \in \mathbb{R}^{n \times p}$ with rows $x_1, \ldots, x_n \in \mathbb{R}^p$. We think of X as n observations of a random vector $(X_1, \ldots, X_p) \in \mathbb{R}^p$.

• Suppose each column has mean 0, i.e., $\sum_{i=1}^{n} x_i = \mathbf{0}_{1 \times p}$.

• We want to find a linear combination $w_1X_1 + \cdots + w_pX_p$ with maximum variance. (Intuition: we look for a direction in \mathbb{R}^p where the data varies the most.)

• Let $X \in \mathbb{R}^{n \times p}$ with rows $x_1, \ldots, x_n \in \mathbb{R}^p$. We think of X as n observations of a random vector $(X_1, \ldots, X_p) \in \mathbb{R}^p$.

• Suppose each column has mean 0, i.e., $\sum_{i=1}^{n} x_i = \mathbf{0}_{1 \times p}$.

• We want to find a linear combination $w_1X_1 + \cdots + w_pX_p$ with maximum variance. (Intuition: we look for a direction in \mathbb{R}^p where the data varies the most.)

We solve:

$$w = \underset{\|w\|_{2}=1}{\operatorname{argmax}} \sum_{i=1}^{n} (x_{i}^{T}w)^{2}.$$

(Note: $\sum_{i=1}^{n} (x_i^T w)^2$ is proportional to the sample variance of the data since we assume each column of X has mean 0.)

• Let $X \in \mathbb{R}^{n \times p}$ with rows $x_1, \ldots, x_n \in \mathbb{R}^p$. We think of X as n observations of a random vector $(X_1, \ldots, X_p) \in \mathbb{R}^p$.

• Suppose each column has mean 0, i.e., $\sum_{i=1}^{n} x_i = \mathbf{0}_{1 \times p}$.

• We want to find a linear combination $w_1X_1 + \cdots + w_pX_p$ with maximum variance. (Intuition: we look for a direction in \mathbb{R}^p where the data varies the most.)

We solve:

$$w = \underset{\|w\|_{2}=1}{\operatorname{argmax}} \sum_{i=1}^{n} (x_{i}^{T}w)^{2}.$$

(Note: $\sum_{i=1}^{n} (x_i^T w)^2$ is proportional to the sample variance of the data since we assume each column of X has mean 0.) Equivalently, we solve:

$$w = \underset{\|w\|_2=1}{\operatorname{argmax}} (Xw)^T (Xw) = \underset{\|w\|_2=1}{\operatorname{argmax}} w^T X^T Xw$$

Claim: w is an eigenvector associated to the largest eigenvalue of $X^T X$.

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric (or Hermitian) matrix. The *Rayleigh quotient* is defined by

$$R(A,x) = \frac{x^T A x}{x^T x} = \frac{\langle A x, x \rangle}{\langle x, x \rangle}, \qquad (x \in \mathbb{R}^p, x \neq \mathbf{0}_{p \times 1}).$$

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric (or Hermitian) matrix. The *Rayleigh quotient* is defined by

$$R(A,x) = \frac{x^T A x}{x^T x} = \frac{\langle A x, x \rangle}{\langle x, x \rangle}, \qquad (x \in \mathbb{R}^p, x \neq \mathbf{0}_{p \times 1}).$$

Observations:

 $\label{eq:rescaled} \begin{array}{l} \bullet \quad \mbox{If } Ax = \lambda x \mbox{ with } \|x\|_2 = 1, \mbox{ then } R(A,x) = \lambda. \mbox{ Thus,} \\ \\ \sup_{x \neq \mathbf{0}} R(A,x) \geq \lambda_{\max}(A). \end{array}$

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric (or Hermitian) matrix. The *Rayleigh* quotient is defined by

$$R(A,x) = \frac{x^T A x}{x^T x} = \frac{\langle A x, x \rangle}{\langle x, x \rangle}, \qquad (x \in \mathbb{R}^p, x \neq \mathbf{0}_{p \times 1}).$$

Observations:

• If
$$Ax = \lambda x$$
 with $||x||_2 = 1$, then $R(A, x) = \lambda$. Thus,

$$\sup_{x \neq \mathbf{0}} R(A, x) \ge \lambda_{\max}(A).$$

2 Let {λ₁,...,λ_p} denote the eigenvalues of A, and let {v₁,...,v_p} ⊂ ℝ^p be an orthonormal basis of eigenvectors of A. If x = ∑^p_{i=1} θ_iv_i, then R(A, x) = ∑^p_{i=1} λ_i θ²_i.

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric (or Hermitian) matrix. The *Rayleigh quotient* is defined by

$$R(A,x) = \frac{x^T A x}{x^T x} = \frac{\langle A x, x \rangle}{\langle x, x \rangle}, \qquad (x \in \mathbb{R}^p, x \neq \mathbf{0}_{p \times 1}).$$

Observations:

• If
$$Ax = \lambda x$$
 with $||x||_2 = 1$, then $R(A, x) = \lambda$. Thus,

$$\sup_{x \neq \mathbf{0}} R(A, x) \ge \lambda_{\max}(A).$$

2 Let $\{\lambda_1, \ldots, \lambda_p\}$ denote the eigenvalues of A, and let $\{v_1, \ldots, v_p\} \subset \mathbb{R}^p$ be an orthonormal basis of eigenvectors of A. If $x = \sum_{i=1}^p \theta_i v_i$, then $R(A, x) = \frac{\sum_{i=1}^p \lambda_i \theta_i^2}{\sum_{i=1}^n \theta_i^2}$. It follows that $\sup_{x \neq \mathbf{0}} R(A, x) \leq \lambda_{\max}(A)$.
Thus, $\sup_{x \neq \mathbf{0}} R(A, x) = \sup_{\|x\|_2 = 1} x^T A x = \lambda_{\max}(A)$.

$$w^{(1)} = \underset{\|w\|_{2}=1}{\operatorname{argmax}} \sum_{i=1}^{n} (x_{i}^{T}w)^{2} = \underset{\|w\|_{2}=1}{\operatorname{argmax}} w^{T}X^{T}Xw$$

is an eigenvector associated to the largest eigenvalue of $X^T X$.

$$w^{(1)} = \underset{\|w\|_{2}=1}{\operatorname{argmax}} \sum_{i=1}^{n} (x_{i}^{T}w)^{2} = \underset{\|w\|_{2}=1}{\operatorname{argmax}} w^{T}X^{T}Xw$$

is an eigenvector associated to the largest eigenvalue of $X^T X$. First principal component:

- The linear combination $\sum_{i=1}^{p} w_i^{(1)} X_i$ is the first principal component of (X_1, \ldots, X_p) .
- Alternatively, we say that $Xw^{(1)}$ is the first (sample) principal component of X.

$$w^{(1)} = \underset{\|w\|_{2}=1}{\operatorname{argmax}} \sum_{i=1}^{n} (x_{i}^{T}w)^{2} = \underset{\|w\|_{2}=1}{\operatorname{argmax}} w^{T}X^{T}Xw$$

is an eigenvector associated to the largest eigenvalue of $X^T X$. First principal component:

- The linear combination $\sum_{i=1}^{p} w_i^{(1)} X_i$ is the first principal component of (X_1, \ldots, X_p) .
- Alternatively, we say that $Xw^{(1)}$ is the first (sample) principal component of X.

• It is the linear combination of the columns of X having the "most variance".

$$w^{(1)} = \underset{\|w\|_{2}=1}{\operatorname{argmax}} \sum_{i=1}^{n} (x_{i}^{T}w)^{2} = \underset{\|w\|_{2}=1}{\operatorname{argmax}} w^{T}X^{T}Xw$$

is an eigenvector associated to the largest eigenvalue of $X^T X$. First principal component:

- The linear combination $\sum_{i=1}^{p} w_i^{(1)} X_i$ is the first principal component of (X_1, \ldots, X_p)
- Alternatively, we say that $Xw^{(1)}$ is the first (sample) principal component of X.

• It is the linear combination of the columns of X having the "most variance".

Second principal component: We look for a new linear combination of the X_i 's that

- Is orthogonal to the first principal component, and
- 2 Maximizes the variance.

Back to PCA (cont.)

In other words:

$$w^{(2)} := \underset{\substack{\|w\|_2 = 1 \\ w \perp w^{(1)}}}{\operatorname{argmax}} \sum_{i=1}^n (x_i^T w)^2 = \underset{\substack{\|w\|_2 = 1 \\ w \perp w^{(1)}}}{\operatorname{argmax}} w^T X^T X w.$$

Back to PCA (cont.)

In other words:

$$w^{(2)} := \underset{\substack{\|w\|_{2}=1\\w \perp w^{(1)}}}{\operatorname{argmax}} \sum_{i=1}^{n} (x_{i}^{T}w)^{2} = \underset{\substack{\|w\|_{2}=1\\w \perp w^{(1)}}}{\operatorname{argmax}} w^{T}X^{T}Xw.$$

• Using a similar argument as before with Rayleigh quotients, we conclude that $w^{(2)}$ is an eigenvector associated to the second largest eigenvalue of $X^T X$.

Back to PCA (cont.)

In other words:

$$w^{(2)} := \underset{\substack{\|w\|_2 = 1 \\ w \perp w^{(1)}}}{\operatorname{argmax}} \sum_{i=1}^n (x_i^T w)^2 = \underset{\substack{\|w\|_2 = 1 \\ w \perp w^{(1)}}}{\operatorname{argmax}} w^T X^T X w.$$

• Using a similar argument as before with Rayleigh quotients, we conclude that $w^{(2)}$ is an eigenvector associated to the second largest eigenvalue of $X^T X$.

ullet Similarly, given $w^{(1)},\ldots,w^{(k)}$, we define

$$w^{(k+1)} := \operatorname*{argmax}_{\substack{\|w\|_2 = 1 \\ w \perp w^{(1)}, w^{(2)}, \dots, w^{(k)}}} \sum_{i=1}^n (x_i^T w)^2 = \operatorname*{argmax}_{\substack{\|w\|_2 = 1 \\ w \perp w^{(1)}, w^{(2)}, \dots, w^{(k)}}} w^T X^T X w.$$

As before, the vector $w^{(k+1)}$ is an eigenvector associated to the (k+1)-th largest eigenvalue of $X^T X$.

PCA: summary

In summary, suppose

$$X^T X = U \Lambda U^T$$

where $U \in \mathbb{R}^{p \times p}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal. (Eigendecomposition of $X^T X$.)

$$X^T X = U \Lambda U^T$$

where $U \in \mathbb{R}^{p \times p}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal. (Eigendecomposition of $X^T X$.)

• Recall that the columns of U are the eigenvectors of $X^T X$ and the diagonal of Λ contains the eigenvalues of $X^T X$ (i.e., the singular values of X).

$$X^T X = U \Lambda U^T$$

where $U \in \mathbb{R}^{p \times p}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal. (Eigendecomposition of $X^T X$.)

• Recall that the columns of U are the eigenvectors of $X^T X$ and the diagonal of Λ contains the eigenvalues of $X^T X$ (i.e., the singular values of X).

• Then the *principal components* of X are the columns of XU.

$$X^T X = U \Lambda U^T$$

where $U \in \mathbb{R}^{p \times p}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal. (Eigendecomposition of $X^T X$.)

• Recall that the columns of U are the eigenvectors of $X^T X$ and the diagonal of Λ contains the eigenvalues of $X^T X$ (i.e., the singular values of X).

• Then the principal components of X are the columns of XU. • Write $U = (u_1, \ldots, u_p)$. Then the variance of the *i*-th principal component is

$$(Xu_i)^T (Xu_i) = u_i^T X^T X u_i = (U^T X^T X U)_{ii} = \Lambda_{ii}.$$

$$X^T X = U \Lambda U^T$$

where $U \in \mathbb{R}^{p \times p}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal. (Eigendecomposition of $X^T X$.)

• Recall that the columns of U are the eigenvectors of $X^T X$ and the diagonal of Λ contains the eigenvalues of $X^T X$ (i.e., the singular values of X).

• Then the principal components of X are the columns of XU. • Write $U = (u_1, \ldots, u_p)$. Then the variance of the *i*-th principal component is

$$(Xu_i)^T (Xu_i) = u_i^T X^T X u_i = (U^T X^T X U)_{ii} = \Lambda_{ii}.$$

Conclusion: The variance of the *i*-th principal component is the *i*-th eigenvalue of $X^T X$.

$$X^T X = U \Lambda U^T$$

where $U \in \mathbb{R}^{p \times p}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal. (Eigendecomposition of $X^T X$.)

• Recall that the columns of U are the eigenvectors of $X^T X$ and the diagonal of Λ contains the eigenvalues of $X^T X$ (i.e., the singular values of X).

• Then the principal components of X are the columns of XU. • Write $U = (u_1, \ldots, u_p)$. Then the variance of the *i*-th principal component is

$$(Xu_i)^T (Xu_i) = u_i^T X^T X u_i = (U^T X^T X U)_{ii} = \Lambda_{ii}.$$

Conclusion: The variance of the *i*-th principal component is the *i*-th eigenvalue of $X^T X$.

• We say that the first k PCs explain $(\sum_{i=1}^k \Lambda_{ii})/(\sum_{i=1}^p \Lambda_{ii})\times 100$ percent of the variance.

Example: zip dataset

Recall the zip dataset:

• 9298 images of digits 0-9.

2 Each image is in black/white with $16 \times 16 = 256$ pixels.

We use PCA to project the data onto a 2-dim subspace of \mathbb{R}^{256} .

Example: zip dataset

Recall the zip dataset:

- **1** 9298 images of digits 0 9.
- 2 Each image is in black/white with $16 \times 16 = 256$ pixels.

We use PCA to project the data onto a 2-dim subspace of $\mathbb{R}^{256}.$

```
from sklearn.decomposition import PCA
pc = PCA(n_components=10)
pc.fit(X_train)
print(pc.explained_variance_ratio_)
plt.plot(range(1,11), np.cumsum(pc.explained_variance_ratio_))
```

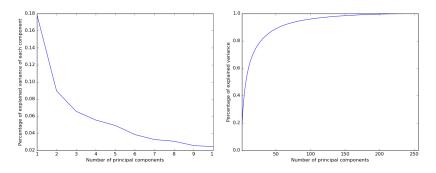
Example: zip dataset

Recall the zip dataset:

- **1** 9298 images of digits 0 9.
- 2 Each image is in black/white with $16 \times 16 = 256$ pixels.

We use PCA to project the data onto a 2-dim subspace of \mathbb{R}^{256} .

```
from sklearn.decomposition import PCA
pc = PCA(n_components=10)
pc.fit(X_train)
print(pc.explained_variance_ratio_)
plt.plot(range(1,11), np.cumsum(pc.explained_variance_ratio_))
```



Example: zip dataset (cont.)

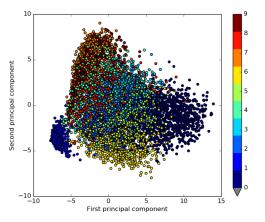
Projecting the data on the first two principal components:

Xt = pc.fit_transform(X_train).

Example: zip dataset (cont.)

Projecting the data on the first two principal components:

Xt = pc.fit_transform(X_train).



• Note: $\approx 27\%$ variance explained by the first two PCAs. • $\approx 90\%$ variance explained by first 55 components.

• PCAs can be directly used in a regression context.

• PCAs can be directly used in a regression context.

Principal component regression: $y \in \mathbb{R}^{n \times 1}$, $X \in \mathbb{R}^{n \times p}$.

Center y and each column of X (i.e., subtract mean from the columns)

• PCAs can be directly used in a regression context.

Principal component regression: $y \in \mathbb{R}^{n \times 1}$, $X \in \mathbb{R}^{n \times p}$.

- Center y and each column of X (i.e., subtract mean from the columns)
- 2 Compute the eigen-decomposition of $X^T X$:

 $X^T X = U \Lambda U^T.$

• PCAs can be directly used in a regression context.

Principal component regression: $y \in \mathbb{R}^{n \times 1}$, $X \in \mathbb{R}^{n \times p}$.

- Center y and each column of X (i.e., subtract mean from the columns)
- 2 Compute the eigen-decomposition of $X^T X$:

$$X^T X = U \Lambda U^T.$$

• Compute $k \ge 1$ principal components:

$$W_k := (Xu_1, \dots, Xu_k) = XU_k,$$

where $U = (u_1, \ldots, u_p)$, and $U_k = (u_1, \ldots, u_k) \in \mathbb{R}^{p \times k}$.

• PCAs can be directly used in a regression context.

Principal component regression: $y \in \mathbb{R}^{n \times 1}$, $X \in \mathbb{R}^{n \times p}$.

- Center y and each column of X (i.e., subtract mean from the columns)
- 2 Compute the eigen-decomposition of $X^T X$:

$$X^T X = U \Lambda U^T.$$

• Compute $k \ge 1$ principal components:

$$W_k := (Xu_1, \ldots, Xu_k) = XU_k,$$

where $U = (u_1, \ldots, u_p)$, and $U_k = (u_1, \ldots, u_k) \in \mathbb{R}^{p \times k}$. **3** Regress y on the principal components:

$$\hat{\gamma}_k := (W_k^T W_k)^{-1} W_k^T y.$$

• PCAs can be directly used in a regression context.

Principal component regression: $y \in \mathbb{R}^{n \times 1}$, $X \in \mathbb{R}^{n \times p}$.

- Center y and each column of X (i.e., subtract mean from the columns)
- 2 Compute the eigen-decomposition of $X^T X$:

$$X^T X = U \Lambda U^T.$$

• Compute $k \ge 1$ principal components:

$$W_k := (Xu_1, \dots, Xu_k) = XU_k,$$

where $U = (u_1, \ldots, u_p)$, and $U_k = (u_1, \ldots, u_k) \in \mathbb{R}^{p \times k}$. **3** Regress y on the principal components:

$$\hat{\gamma}_k := (W_k^T W_k)^{-1} W_k^T y.$$

The PCR estimator is:

$$\hat{\beta}_k := U_k \hat{\gamma}_k, \qquad \hat{y}^{(k)} := X \hat{\beta}_k = X U_k \hat{\beta}_k.$$

• PCAs can be directly used in a regression context.

Principal component regression: $y \in \mathbb{R}^{n \times 1}$, $X \in \mathbb{R}^{n \times p}$.

- Center y and each column of X (i.e., subtract mean from the columns)
- **2** Compute the eigen-decomposition of $X^T X$:

$$X^T X = U \Lambda U^T.$$

 $\textbf{O} \quad \textbf{Compute } k \geq 1 \text{ principal components:}$

$$W_k := (Xu_1, \dots, Xu_k) = XU_k,$$

where $U = (u_1, \ldots, u_p)$, and $U_k = (u_1, \ldots, u_k) \in \mathbb{R}^{p \times k}$. **3** Regress y on the principal components:

$$\hat{\gamma}_k := (W_k^T W_k)^{-1} W_k^T y.$$

The PCR estimator is:

$$\hat{\beta}_k := U_k \hat{\gamma}_k, \qquad \hat{y}^{(k)} := X \hat{\beta}_k = X U_k \hat{\beta}_k.$$

Note: k is a parameter that needs to be chosen (using CV or another method). Typically, one picks k to be significantly smaller than p.

• PCA looks for subspaces with the most variance.

- PCA looks for subspaces with the most variance.
- Can also optimize other criteria.

- PCA looks for subspaces with the most variance.
- Can also optimize other criteria.

Projection pursuit (PP):

 Set up a projection "index" to judge the merit of a particular one or two-dimensional projection of a given set of multivariate data.

- PCA looks for subspaces with the most variance.
- Can also optimize other criteria.

Projection pursuit (PP):

- Set up a projection "index" to judge the merit of a particular one or two-dimensional projection of a given set of multivariate data.
- Use an optimization algorithm to find the global and local extrema of that projection index over all 1/2-dimensional projections of the data.

- PCA looks for subspaces with the most variance.
- Can also optimize other criteria.

Projection pursuit (PP):

- Set up a projection "index" to judge the merit of a particular one or two-dimensional projection of a given set of multivariate data.
- Use an optimization algorithm to find the global and local extrema of that projection index over all 1/2-dimensional projections of the data.

Example:(Izenman, 2013) The absolute value of kurtosis, $|\kappa_4(Y)|$, of the one-dimensional projection $Y = w^T X$ has been widely used as a measure of non-Gaussianity of Y.

- PCA looks for subspaces with the most variance.
- Can also optimize other criteria.

Projection pursuit (PP):

- Set up a projection "index" to judge the merit of a particular one or two-dimensional projection of a given set of multivariate data.
- Use an optimization algorithm to find the global and local extrema of that projection index over all 1/2-dimensional projections of the data.

Example:(Izenman, 2013) The absolute value of kurtosis, $|\kappa_4(Y)|$, of the one-dimensional projection $Y = w^T X$ has been widely used as a measure of non-Gaussianity of Y.

• Recall: The marginals of the multivariate Gaussian distribution are Gaussian.

- PCA looks for subspaces with the most variance.
- Can also optimize other criteria.

Projection pursuit (PP):

- Set up a projection "index" to judge the merit of a particular one or two-dimensional projection of a given set of multivariate data.
- Use an optimization algorithm to find the global and local extrema of that projection index over all 1/2-dimensional projections of the data.

Example:(Izenman, 2013) The absolute value of kurtosis, $|\kappa_4(Y)|$, of the one-dimensional projection $Y = w^T X$ has been widely used as a measure of non-Gaussianity of Y.

• Recall: The marginals of the multivariate Gaussian distribution are Gaussian.

• Can maximize/minimize the kurtosis to find subspaces where data looks Gaussian/non-Gaussian (e.g. to detect outliers).