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The Gauss�Markov theorem

As before, we assume:

Y = X1β1 + · · ·+Xpβp = XTβ.

We observe X ∈ Rn×p, Y ∈ Rn. Then

β̂LS = (XTX)−1XTY.

Under some natural assumptions, we can show that β̂LS is the best

linear unbiased estimator for β.

Assumptions: Y = Xβ + ε, where ε ∈ Rn with:
1 E(εi) = 0.
2 Var(εi) = σ2 <∞.
3 Cov(εi, εj) = 0 for all i 6= j.

Note:

(3) means that the errors are uncorrelated. In particular, (3)
holds if the errors are independent.

The errors need not be normal, nor independent, nor
identically distributed.

2/14



The Gauss�Markov theorem

As before, we assume:

Y = X1β1 + · · ·+Xpβp = XTβ.

We observe X ∈ Rn×p, Y ∈ Rn. Then

β̂LS = (XTX)−1XTY.

Under some natural assumptions, we can show that β̂LS is the best

linear unbiased estimator for β.

Assumptions: Y = Xβ + ε, where ε ∈ Rn with:
1 E(εi) = 0.
2 Var(εi) = σ2 <∞.
3 Cov(εi, εj) = 0 for all i 6= j.

Note:

(3) means that the errors are uncorrelated. In particular, (3)
holds if the errors are independent.

The errors need not be normal, nor independent, nor
identically distributed.

2/14



The Gauss�Markov theorem

As before, we assume:

Y = X1β1 + · · ·+Xpβp = XTβ.

We observe X ∈ Rn×p, Y ∈ Rn. Then

β̂LS = (XTX)−1XTY.

Under some natural assumptions, we can show that β̂LS is the best

linear unbiased estimator for β.

Assumptions: Y = Xβ + ε, where ε ∈ Rn with:
1 E(εi) = 0.
2 Var(εi) = σ2 <∞.
3 Cov(εi, εj) = 0 for all i 6= j.

Note:

(3) means that the errors are uncorrelated. In particular, (3)
holds if the errors are independent.

The errors need not be normal, nor independent, nor
identically distributed.

2/14



The Gauss�Markov theorem

As before, we assume:

Y = X1β1 + · · ·+Xpβp = XTβ.

We observe X ∈ Rn×p, Y ∈ Rn. Then

β̂LS = (XTX)−1XTY.

Under some natural assumptions, we can show that β̂LS is the best

linear unbiased estimator for β.

Assumptions: Y = Xβ + ε, where ε ∈ Rn with:

1 E(εi) = 0.
2 Var(εi) = σ2 <∞.
3 Cov(εi, εj) = 0 for all i 6= j.

Note:

(3) means that the errors are uncorrelated. In particular, (3)
holds if the errors are independent.

The errors need not be normal, nor independent, nor
identically distributed.

2/14



The Gauss�Markov theorem

As before, we assume:

Y = X1β1 + · · ·+Xpβp = XTβ.

We observe X ∈ Rn×p, Y ∈ Rn. Then

β̂LS = (XTX)−1XTY.

Under some natural assumptions, we can show that β̂LS is the best

linear unbiased estimator for β.

Assumptions: Y = Xβ + ε, where ε ∈ Rn with:
1 E(εi) = 0.
2 Var(εi) = σ2 <∞.
3 Cov(εi, εj) = 0 for all i 6= j.

Note:

(3) means that the errors are uncorrelated. In particular, (3)
holds if the errors are independent.

The errors need not be normal, nor independent, nor
identically distributed.

2/14



The Gauss�Markov theorem

As before, we assume:

Y = X1β1 + · · ·+Xpβp = XTβ.

We observe X ∈ Rn×p, Y ∈ Rn. Then

β̂LS = (XTX)−1XTY.

Under some natural assumptions, we can show that β̂LS is the best

linear unbiased estimator for β.

Assumptions: Y = Xβ + ε, where ε ∈ Rn with:
1 E(εi) = 0.
2 Var(εi) = σ2 <∞.
3 Cov(εi, εj) = 0 for all i 6= j.

Note:

(3) means that the errors are uncorrelated. In particular, (3)
holds if the errors are independent.

The errors need not be normal, nor independent, nor
identically distributed.

2/14



Gauss�Markov (cont.)

Remarks: In our model Y = Xβ + ε,

X is �xed.

ε is random.

Y is random.

β is �xed, but unobservable.

We want to estimate β.

A linear estimator of β, is an estimator of the form β̂ = CY, where
C = (cij) ∈ Rp×n is a matrix, and

cij = cij(X).

Note: β̂ is random since Y is assumed to be random.
In particular, β̂LS = (XTX)−1XTY is a linear estimator with
C = (XTX)−1XT .

An estimator is unbiased if E(β̂) = β.
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Gauss�Markov (cont.)

Ultimately, we want to use β̂ to predict Y , i.e.,
Ŷi = Xi1β̂1 +Xi2β̂2 + · · ·+Xipβ̂p.

We want to control to error of the prediction.

We de�ne the mean squared error (MSE) of a linear combination of
the coe�cients of β̂ by

MSE(aT β̂) = E

( n∑
i=1

ai(β̂i − βi)

)2
 (a ∈ Rp).

Theorem (Gauss�Markov theorem)

Suppose Y = Xβ + ε where ε satis�es the previous assumptions.

Let β̂ = CY be a linear unbiased estimator of β. Then for all

a ∈ Rp,

MSE(aT β̂LS) ≤ MSE(aT β̂).

We say that β̂LS is the best linear unbiased estimator (BLUE) of
β.
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Gauss�Markov (cont.)

The bias-variance tradeo�

Let Z = aTβ and Ẑ = aT β̂. (Note: Z is non-random). Then

MSE(aT β̂) = E
[
(aT (β̂ − β))2

]
= E

[
(Ẑ − Z)2

]
= E(Z2 − 2ZẐ + Ẑ2)

= E(Z2)− 2E(ZẐ) + E(Ẑ2)

= Z2 − 2ZE(Ẑ) + Var(Ẑ) + E(Ẑ)2

= (Z − E(Ẑ))2︸ ︷︷ ︸
bias

2

+ Var(Ẑ)︸ ︷︷ ︸
variance

.

Therefore, MSE = Bias-squared + Variance.

As a result, if β̂ is unbiased, then MSE(aTβ) = Var(Ẑ).
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Gauss�Markov (cont.)

We now prove the Gauss�Markov theorem.

Using the bias-variance
decomposition of MSE, it su�ces to show that for every unbiased
estimator of β,

Var(aT β̂LS) ≤ Var(aT β̂) ∀a ∈ Rp.

Proof. Let β̂ = CY where C = (XTX)−1XT +D for some
D ∈ Rp×n. We will compute E(β̂) and Var(aT β̂).

E(β̂) = E
[
((XTX)−1XT +D)Y

]
= E

[
((XTX)−1XT +D)(Xβ + ε)

]
= (I +DX)β.

In order for β̂ to be unbiased, we need DX = 0.

We now compute Var(aT β̂).
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Gauss�Markov (cont.)

Recall:
Var(aT β̂) = aTΣa,

where Σ = (Cov(β̂i, β̂j)) = Var(β̂).

More generally, if A ∈ Rp×p,
then

Var(Aβ̂) = AVar(β̂)AT .

Using these formulas, we obtain

Var(β̂) = Var(CY)

= C Var(Y)CT = σ2CCT

= σ2((XTX)−1XT +D)((XTX)−1XT +D)T

= σ2(XTX)−1XTX(XTX)−1

+ σ2

(XTX)−1 XTDT︸ ︷︷ ︸
=(DX)T=0

+DX︸︷︷︸
=0

(XTX)−1 +DDT


= σ2

[
(XTX)−1 +DDT

]
.
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Gauss�Markov

We have shown:

Var(β̂) = σ2(XTX)−1 + σ2DDT .

Note that the matrices (XTX)−1 and DDT are positive
semide�nite.

Therefore,

Var(aT β̂) = aT (σ2(XTX)−1 + σ2DDT )a ≥ aTσ2(XTX)−1a

= Var(aT β̂LS).

This concludes the proof.
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Back to bias-variance tradeo�

We saw that

MSE(aT β̂) = (aTβ − E(aT β̂))2 + Var(aT β̂).

Moreover, according to the Gauss�Markov theorem, for every
unbiased estimator β̂,

MSE(aT β̂LS) = Var(aT β̂LS) ≤ MSE(aT β̂)

Problems with least squares:

1 Least squares estimates often have large variance, and can
have low prediction accuracy (especially when working with
small samples).

2 Generally, all the regression coe�cients βi are nonzero, making
the model hard to interpret. Often, we want to identify the
relevant variables to get the �big picture�.

We can often increase the prediction accuracy by sacri�cing a little
bit of bias to reduce the variance of the estimator.
We will later examine some useful alternatives to least squares.
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Training error and test error

A natural way to improve least squares is to force some of the
coe�cients to be zero.

Resulting estimator is biased, but can bene�t from the
bias-variance tradeo�.

Model is easier to interpret.

Complexity of the model:

A complex model that �ts data very well will often make poor
predictions. Over�tting.

On the other hand, a very simple model may not capture the
complexity of the data. Under�tting.

To test the ability of a model to predict new values:
1 We split our data into 2 parts (training data and test data) as

uniformly as possible. People often use 75% training, 25% test.
2 We �t our model using the training data only. (This minimizes

the training error).
3 We use the �tted model to predict values of the test data and

compute the test error.
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Training error and test error (cont.)

Splitting data into training/test data:

In the case of least squares:

1 β̂ = (XT
train

Xtrain)−1XT
train

Ytrain.
2 Ŷtest = Xtestβ̂.
3 Test error:

MSEtest =
1

n2

n2∑
i=1

(Ŷtest,i − Ytest,i)2.

We choose a model that minimizes the test error.
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Training error and test error (cont.)

Typical behavior of the test and training error, as model complexity
is varied.

ESL, Fig 2.11.
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Training sets and test sets (Python)

Scikit-learn provides a function to split the data automatically for
us.

from sklearn.cross_validation import train_test_split

# Split data into training and test sets
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.25,
random_state=42)

# Fit model on training data
lin_model = LinearRegression(fit_intercept=True)
lin_model.fit(X_train,y_train)

# Returns the coefficient of determination R^2.
lin_model.score(X_test, y_test)
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The coe�cient of determination

Regression models are often ranked using the coe�cient of

determination called �R squared� and denoted R2.

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − y)2

.

In some sense, the R2 measures �how much better� is the
prediction, compared to a constant prediction equal to the
average of the yis.

The score method in sklearn returns the R2.

We want a model with a test R2 as close to 1 as possible.
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