
MATH 829: Introduction to Data Mining and
Analysis

Decision trees

Dominique Guillot

Departments of Mathematical Sciences

University of Delaware

April 6, 2016

1/14

Decision trees

Tree-based methods:

Partition the feature space into a set of rectangles.

Fit a simple model (e.g. a constant) in each rectangle.

Conceptually simple yet powerful.

Izenman, 2013, Figure 9.1.

2/14

Example: spam data

ESL, Figure 9.5.

3/14

Decision trees

Advantages:

Often mimics human decision-making process (e.g. doctor

examining patient).

Very easy to explain and interpret.

Can handle both regression and classi�cation problems.

Disadvantage:

Basic implementation is generally not competitive compared to

other methods.

However, by aggregating many decision trees and using other

variants, one can improve the performance signi�cantly.

Such techniques lead to state-of-the-art models.

However, in doing so, one loses the easy interpretability of

decision trees.

4/14

Decision trees

Advantages:

Often mimics human decision-making process (e.g. doctor

examining patient).

Very easy to explain and interpret.

Can handle both regression and classi�cation problems.

Disadvantage:

Basic implementation is generally not competitive compared to

other methods.

However, by aggregating many decision trees and using other

variants, one can improve the performance signi�cantly.

Such techniques lead to state-of-the-art models.

However, in doing so, one loses the easy interpretability of

decision trees.

4/14

Decision trees

Advantages:

Often mimics human decision-making process (e.g. doctor

examining patient).

Very easy to explain and interpret.

Can handle both regression and classi�cation problems.

Disadvantage:

Basic implementation is generally not competitive compared to

other methods.

However, by aggregating many decision trees and using other

variants, one can improve the performance signi�cantly.

Such techniques lead to state-of-the-art models.

However, in doing so, one loses the easy interpretability of

decision trees.

4/14

Decision trees

Advantages:

Often mimics human decision-making process (e.g. doctor

examining patient).

Very easy to explain and interpret.

Can handle both regression and classi�cation problems.

Disadvantage:

Basic implementation is generally not competitive compared to

other methods.

However, by aggregating many decision trees and using other

variants, one can improve the performance signi�cantly.

Such techniques lead to state-of-the-art models.

However, in doing so, one loses the easy interpretability of

decision trees.

4/14

Binary decision trees

To simplify, we will only consider binary decision trees.

ESL, Figure 9.2.

Top Left: Not binary. Top Right: binary.

Bottom Left: Tree corresponding to Top Right partition. Bottom Right: Prediction surface.

5/14

How to grow a decision tree?

Regression tree:

Data: y ∈ Rn, X ∈ Rn×p.
Each observation: (yi, xi) ∈ Rp+1, i = 1, . . . , n.

Suppose we have a partition of Rp into M regions R1, . . . , Rm.

We predict the response using a constant on each Ri:

f(x) =

m∑
i=1

ci · 1x∈Ri .

In order to minimize
∑n

i=1(yi − f(xi))2, one needs to choose:

ĉi = ave(yj : xj ∈ Ri).

How do we determine the regions Ri, i.e., how do we �grow� the

tree?

We need to decide:
1 Which variable to split.
2 Where to split that variable.

6/14

How to grow a decision tree?

Regression tree:

Data: y ∈ Rn, X ∈ Rn×p.
Each observation: (yi, xi) ∈ Rp+1, i = 1, . . . , n.

Suppose we have a partition of Rp into M regions R1, . . . , Rm.

We predict the response using a constant on each Ri:

f(x) =

m∑
i=1

ci · 1x∈Ri .

In order to minimize
∑n

i=1(yi − f(xi))2, one needs to choose:

ĉi = ave(yj : xj ∈ Ri).

How do we determine the regions Ri, i.e., how do we �grow� the

tree?

We need to decide:
1 Which variable to split.
2 Where to split that variable.

6/14

How to grow a decision tree?

Regression tree:

Data: y ∈ Rn, X ∈ Rn×p.
Each observation: (yi, xi) ∈ Rp+1, i = 1, . . . , n.

Suppose we have a partition of Rp into M regions R1, . . . , Rm.

We predict the response using a constant on each Ri:

f(x) =

m∑
i=1

ci · 1x∈Ri .

In order to minimize
∑n

i=1(yi − f(xi))2, one needs to choose:

ĉi = ave(yj : xj ∈ Ri).

How do we determine the regions Ri, i.e., how do we �grow� the

tree?

We need to decide:
1 Which variable to split.
2 Where to split that variable.

6/14

How to grow a decision tree?

Regression tree:

Data: y ∈ Rn, X ∈ Rn×p.
Each observation: (yi, xi) ∈ Rp+1, i = 1, . . . , n.

Suppose we have a partition of Rp into M regions R1, . . . , Rm.

We predict the response using a constant on each Ri:

f(x) =

m∑
i=1

ci · 1x∈Ri .

In order to minimize
∑n

i=1(yi − f(xi))2, one needs to choose:

ĉi = ave(yj : xj ∈ Ri).

How do we determine the regions Ri, i.e., how do we �grow� the

tree?

We need to decide:
1 Which variable to split.
2 Where to split that variable.

6/14

How to grow a decision tree?

Regression tree:

Data: y ∈ Rn, X ∈ Rn×p.
Each observation: (yi, xi) ∈ Rp+1, i = 1, . . . , n.

Suppose we have a partition of Rp into M regions R1, . . . , Rm.

We predict the response using a constant on each Ri:

f(x) =

m∑
i=1

ci · 1x∈Ri .

In order to minimize
∑n

i=1(yi − f(xi))2, one needs to choose:

ĉi = ave(yj : xj ∈ Ri).

How do we determine the regions Ri, i.e., how do we �grow� the

tree?

We need to decide:
1 Which variable to split.
2 Where to split that variable.

6/14

How to grow a decision tree?

Regression tree:

Data: y ∈ Rn, X ∈ Rn×p.
Each observation: (yi, xi) ∈ Rp+1, i = 1, . . . , n.

Suppose we have a partition of Rp into M regions R1, . . . , Rm.

We predict the response using a constant on each Ri:

f(x) =

m∑
i=1

ci · 1x∈Ri .

In order to minimize
∑n

i=1(yi − f(xi))2, one needs to choose:

ĉi = ave(yj : xj ∈ Ri).

How do we determine the regions Ri, i.e., how do we �grow� the

tree?

We need to decide:
1 Which variable to split.
2 Where to split that variable.

6/14

Growing a tree

Finding a (globally) optimal tree is generally computationally

infeasible.

We use a greedy algorithm.

Consider a splitting variable j ∈ {1, . . . , p} and splitting point

s ∈ R.
De�ne the two half-planes:

R1(j, s) := {x ∈ Rp : xj ≤ s}, R2(j, s) := {x ∈ Rp : xj > s}.
We choose j, s to minimize

min
j,s

min
c1∈R

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2∈R

∑
xi∈R2(j,s)

(yi − c2)2
 .

The determination of the splitting point s can be done very

quickly.

Hence, determining the best pair (j, s) is feasible.

Repeat the same process to each block.

7/14

Growing a tree

Finding a (globally) optimal tree is generally computationally

infeasible.

We use a greedy algorithm.

Consider a splitting variable j ∈ {1, . . . , p} and splitting point

s ∈ R.

De�ne the two half-planes:

R1(j, s) := {x ∈ Rp : xj ≤ s}, R2(j, s) := {x ∈ Rp : xj > s}.
We choose j, s to minimize

min
j,s

min
c1∈R

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2∈R

∑
xi∈R2(j,s)

(yi − c2)2
 .

The determination of the splitting point s can be done very

quickly.

Hence, determining the best pair (j, s) is feasible.

Repeat the same process to each block.

7/14

Growing a tree

Finding a (globally) optimal tree is generally computationally

infeasible.

We use a greedy algorithm.

Consider a splitting variable j ∈ {1, . . . , p} and splitting point

s ∈ R.
De�ne the two half-planes:

R1(j, s) := {x ∈ Rp : xj ≤ s}, R2(j, s) := {x ∈ Rp : xj > s}.

We choose j, s to minimize

min
j,s

min
c1∈R

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2∈R

∑
xi∈R2(j,s)

(yi − c2)2
 .

The determination of the splitting point s can be done very

quickly.

Hence, determining the best pair (j, s) is feasible.

Repeat the same process to each block.

7/14

Growing a tree

Finding a (globally) optimal tree is generally computationally

infeasible.

We use a greedy algorithm.

Consider a splitting variable j ∈ {1, . . . , p} and splitting point

s ∈ R.
De�ne the two half-planes:

R1(j, s) := {x ∈ Rp : xj ≤ s}, R2(j, s) := {x ∈ Rp : xj > s}.
We choose j, s to minimize

min
j,s

min
c1∈R

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2∈R

∑
xi∈R2(j,s)

(yi − c2)2
 .

The determination of the splitting point s can be done very

quickly.

Hence, determining the best pair (j, s) is feasible.

Repeat the same process to each block.

7/14

Growing a tree

Finding a (globally) optimal tree is generally computationally

infeasible.

We use a greedy algorithm.

Consider a splitting variable j ∈ {1, . . . , p} and splitting point

s ∈ R.
De�ne the two half-planes:

R1(j, s) := {x ∈ Rp : xj ≤ s}, R2(j, s) := {x ∈ Rp : xj > s}.
We choose j, s to minimize

min
j,s

min
c1∈R

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2∈R

∑
xi∈R2(j,s)

(yi − c2)2
 .

The determination of the splitting point s can be done very

quickly.

Hence, determining the best pair (j, s) is feasible.

Repeat the same process to each block.
7/14

Stopping rules and pruning

Generally, the process is stopped for a given region when there

are less than 5 observations in that region.

Problem with previous methodology:

Likely to over�t the data.

Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (over�ts), and the

prune it (better).

Weakest link pruning:

(a.k.a cost complexity pruning)

Let T ⊂ T0 be a subtree of T0 with |T |
terminal nodes. For α > 0, de�ne:

Cα(T) :=

|T |∑
m=1

∑
i:xi∈Rm

(yi−ŷRm)
2+α·|T |.

Pick a subtree minimizing Cα(T).

8/14

Stopping rules and pruning

Generally, the process is stopped for a given region when there

are less than 5 observations in that region.

Problem with previous methodology:

Likely to over�t the data.

Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (over�ts), and the

prune it (better).

Weakest link pruning:

(a.k.a cost complexity pruning)

Let T ⊂ T0 be a subtree of T0 with |T |
terminal nodes. For α > 0, de�ne:

Cα(T) :=

|T |∑
m=1

∑
i:xi∈Rm

(yi−ŷRm)
2+α·|T |.

Pick a subtree minimizing Cα(T).

8/14

Stopping rules and pruning

Generally, the process is stopped for a given region when there

are less than 5 observations in that region.

Problem with previous methodology:

Likely to over�t the data.

Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (over�ts), and the

prune it (better).

Weakest link pruning:

(a.k.a cost complexity pruning)

Let T ⊂ T0 be a subtree of T0 with |T |
terminal nodes. For α > 0, de�ne:

Cα(T) :=

|T |∑
m=1

∑
i:xi∈Rm

(yi−ŷRm)
2+α·|T |.

Pick a subtree minimizing Cα(T).

8/14

Stopping rules and pruning

Generally, the process is stopped for a given region when there

are less than 5 observations in that region.

Problem with previous methodology:

Likely to over�t the data.

Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (over�ts), and the

prune it (better).

Weakest link pruning:

(a.k.a cost complexity pruning)

Let T ⊂ T0 be a subtree of T0 with |T |
terminal nodes. For α > 0, de�ne:

Cα(T) :=

|T |∑
m=1

∑
i:xi∈Rm

(yi−ŷRm)
2+α·|T |.

Pick a subtree minimizing Cα(T).

8/14

Stopping rules and pruning

Generally, the process is stopped for a given region when there

are less than 5 observations in that region.

Problem with previous methodology:

Likely to over�t the data.

Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (over�ts), and the

prune it (better).

Weakest link pruning:

(a.k.a cost complexity pruning)

Let T ⊂ T0 be a subtree of T0 with |T |
terminal nodes. For α > 0, de�ne:

Cα(T) :=

|T |∑
m=1

∑
i:xi∈Rm

(yi−ŷRm)
2+α·|T |.

Pick a subtree minimizing Cα(T).

8/14

Pruning (cont.)

Pick a subtree T ⊂ T0 minimizing:

Cα(T) :=

|T |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)
2 + α · |T |.

(Here, ŷRm =average response for observations in Rm.)

α is a tuning parameter.

Trade-o� between �t of the model, and tree complexity.

Choose α using cross-validation.

Once α has been chosen by CV, use whole dataset to �nd the tree

corresponding to that value.

9/14

Pruning (cont.)

Pick a subtree T ⊂ T0 minimizing:

Cα(T) :=

|T |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)
2 + α · |T |.

(Here, ŷRm =average response for observations in Rm.)

α is a tuning parameter.

Trade-o� between �t of the model, and tree complexity.

Choose α using cross-validation.

Once α has been chosen by CV, use whole dataset to �nd the tree

corresponding to that value.

9/14

Pruning (cont.)

Pick a subtree T ⊂ T0 minimizing:

Cα(T) :=

|T |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)
2 + α · |T |.

(Here, ŷRm =average response for observations in Rm.)

α is a tuning parameter.

Trade-o� between �t of the model, and tree complexity.

Choose α using cross-validation.

Once α has been chosen by CV, use whole dataset to �nd the tree

corresponding to that value.

9/14

Classi�cation trees

So far, we discussed regression trees (continuous output).

We can easily modify the methodology to predict a categorical

output.

We only need to modify our splitting and pruning criteria.

For continuous variables, we picked a constant in each box Ri to
minimize the sum of squares in that region:

min
c∈R

∑
xi∈Ri

(yi − c)2.

As a result, we choose:

ĉi =
1

Ni

∑
xk∈Ri

yk,

where Ni denotes the number of observations in Ri.

10/14

Classi�cation trees

So far, we discussed regression trees (continuous output).

We can easily modify the methodology to predict a categorical

output.

We only need to modify our splitting and pruning criteria.

For continuous variables, we picked a constant in each box Ri to
minimize the sum of squares in that region:

min
c∈R

∑
xi∈Ri

(yi − c)2.

As a result, we choose:

ĉi =
1

Ni

∑
xk∈Ri

yk,

where Ni denotes the number of observations in Ri.

10/14

Classi�cation trees

So far, we discussed regression trees (continuous output).

We can easily modify the methodology to predict a categorical

output.

We only need to modify our splitting and pruning criteria.

For continuous variables, we picked a constant in each box Ri to
minimize the sum of squares in that region:

min
c∈R

∑
xi∈Ri

(yi − c)2.

As a result, we choose:

ĉi =
1

Ni

∑
xk∈Ri

yk,

where Ni denotes the number of observations in Ri.

10/14

Classi�cation trees

So far, we discussed regression trees (continuous output).

We can easily modify the methodology to predict a categorical

output.

We only need to modify our splitting and pruning criteria.

For continuous variables, we picked a constant in each box Ri to
minimize the sum of squares in that region:

min
c∈R

∑
xi∈Ri

(yi − c)2.

As a result, we choose:

ĉi =
1

Ni

∑
xk∈Ri

yk,

where Ni denotes the number of observations in Ri.

10/14

Classi�cation trees

So far, we discussed regression trees (continuous output).

We can easily modify the methodology to predict a categorical

output.

We only need to modify our splitting and pruning criteria.

For continuous variables, we picked a constant in each box Ri to
minimize the sum of squares in that region:

min
c∈R

∑
xi∈Ri

(yi − c)2.

As a result, we choose:

ĉi =
1

Ni

∑
xk∈Ri

yk,

where Ni denotes the number of observations in Ri.

10/14

Classi�cation trees (cont.)

Similarly, when the output is categorical, we can count the

proportion of class k observations in node i:

p̂ik =
1

Ni

∑
xl∈Ri

1yl∈Ri .

We then classify the observations in node i using a majority vote:

k(i) := argmax
k

p̂ik.

Di�erent measures are commonly used to determine how good a

given partition is (and how to split a given partition):

1 Misclassi�cation error: 1
Ni

∑
xl∈Ri

1yl 6=k(i) = 1− p̂i,k(i).
2 Gini index:

∑
k 6=k′ p̂ikp̂ik′ =

∑K
k=1 p̂ik(1− p̂ik).

3 Cross-entropy (or deviance): −
∑K

k=1 p̂ik log p̂ik.

11/14

Classi�cation trees (cont.)

Similarly, when the output is categorical, we can count the

proportion of class k observations in node i:

p̂ik =
1

Ni

∑
xl∈Ri

1yl∈Ri .

We then classify the observations in node i using a majority vote:

k(i) := argmax
k

p̂ik.

Di�erent measures are commonly used to determine how good a

given partition is (and how to split a given partition):

1 Misclassi�cation error: 1
Ni

∑
xl∈Ri

1yl 6=k(i) = 1− p̂i,k(i).
2 Gini index:

∑
k 6=k′ p̂ikp̂ik′ =

∑K
k=1 p̂ik(1− p̂ik).

3 Cross-entropy (or deviance): −
∑K

k=1 p̂ik log p̂ik.

11/14

Classi�cation trees (cont.)

Similarly, when the output is categorical, we can count the

proportion of class k observations in node i:

p̂ik =
1

Ni

∑
xl∈Ri

1yl∈Ri .

We then classify the observations in node i using a majority vote:

k(i) := argmax
k

p̂ik.

Di�erent measures are commonly used to determine how good a

given partition is (and how to split a given partition):

1 Misclassi�cation error: 1
Ni

∑
xl∈Ri

1yl 6=k(i) = 1− p̂i,k(i).
2 Gini index:

∑
k 6=k′ p̂ikp̂ik′ =

∑K
k=1 p̂ik(1− p̂ik).

3 Cross-entropy (or deviance): −
∑K

k=1 p̂ik log p̂ik.

11/14

Classi�cation trees (cont.)

With two classes and a proportion of 0 < p < 1 observations in the

second class, we have (exercise):

Measure Value

Misclassi�cation error 1−max(p, 1− p)
Gini index 2p(1− p)
Cross-entropy −p log p− (1− p) log(1− p)

ESL, Figure 9.3.

12/14

Case study: Pima Indians Diabetes (Izenman, 2013)

Pima Indian (nativa American) population lives near Phoenix,

Arizona.

The diversion of the water and the introduction of non-native

diet had devastating e�ects on the health of the people. They

have the highest prevalence of type 2 diabetes in the world,

much more than is observed in other U.S. populations. They

have been the subject of intensive study of diabetes. 1

Patients listed in the dataset are females at least 21 years old

of Pima Indian heritage.

8 input variables (e.g. number of times pregnant, body mass

index, plasma glucose concentration, etc.).

1Wikipedia

13/14

Case study (cont.)

Classi�cation tree for the Pima indians diabetes data. Impurity measure = Gini index. (Izenman, Figure 9.5.)

14/14

