MATH 829: Introduction to Data Mining and Analysis Neural networks II

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware
April 13, 2016

We have:

$$
\begin{aligned}
a_{1}^{(2)} & =f\left(W_{11}^{(1)} x_{1}+W_{12}^{(1)} x_{2}+W_{13}^{(1)} x_{3}+b_{1}^{(1)}\right) \\
a_{2}^{(2)} & =f\left(W_{21}^{(1)} x_{1}+W_{22}^{(1)} x_{2}+W_{23}^{(1)} x_{3}+b_{2}^{(1)}\right) \\
a_{3}^{(2)} & =f\left(W_{31}^{(1)} x_{1}+W_{32}^{(1)} x_{2}+W_{33}^{(1)} x_{3}+b_{3}^{(1)}\right) \\
h_{W, b} & =a_{1}^{(3)}=f\left(W_{11}^{(2)} a_{1}^{(2)}+W_{12}^{(2)} a_{2}^{(2)}+W_{13}^{(2)} a_{3}^{(2)}+b_{1}^{(2)}\right) .
\end{aligned}
$$

Vector form:

$$
\begin{aligned}
z^{(2)} & =W^{(1)} x+b^{(1)} \\
a^{(2)} & =f\left(z^{(2)}\right) \\
z^{(3)} & =W^{(2)} a^{(2)}+b^{(2)} \\
h_{W, b} & =a^{(3)}=f\left(z^{(3)}\right)
\end{aligned}
$$

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.
- Observations $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{R}^{s_{n_{l}}}$. We would like to choose $W^{(l)}$ and $b^{(l)}$ in some optimal way for all l.

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.
- Observations $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{R}^{s_{n_{l}}}$. We would like to choose $W^{(l)}$ and $b^{(l)}$ in some optimal way for all l.

Let
$J(W, b ; x, y):=\frac{1}{2}\left\|h_{W, b}(x)-y\right\|_{2}^{2} \quad$ (Squared error for one sample).

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.
- Observations $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{R}^{s_{n_{l}}}$.

We would like to choose $W^{(l)}$ and $b^{(l)}$ in some optimal way for all l.
Let
$J(W, b ; x, y):=\frac{1}{2}\left\|h_{W, b}(x)-y\right\|_{2}^{2} \quad$ (Squared error for one sample).
Define

$$
J(W, b):=\frac{1}{m} \sum_{i=1}^{m} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\frac{\lambda}{2} \sum_{l=1}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{(l)}\right)^{2} .
$$

(average squared error with Ridge penalty).

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.
- Observations $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{R}^{s_{n_{l}}}$.

We would like to choose $W^{(l)}$ and $b^{(l)}$ in some optimal way for all l.
Let
$J(W, b ; x, y):=\frac{1}{2}\left\|h_{W, b}(x)-y\right\|_{2}^{2} \quad$ (Squared error for one sample).
Define

$$
J(W, b):=\frac{1}{m} \sum_{i=1}^{m} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\frac{\lambda}{2} \sum_{l=1}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{(l)}\right)^{2} .
$$

(average squared error with Ridge penalty).
Note:

- The Ridge penalty prevents overfitting.

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.
- Observations $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{R}^{s_{n_{l}}}$.

We would like to choose $W^{(l)}$ and $b^{(l)}$ in some optimal way for all l.
Let
$J(W, b ; x, y):=\frac{1}{2}\left\|h_{W, b}(x)-y\right\|_{2}^{2} \quad$ (Squared error for one sample).
Define

$$
J(W, b):=\frac{1}{m} \sum_{i=1}^{m} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\frac{\lambda}{2} \sum_{l=1}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{(l)}\right)^{2} .
$$

(average squared error with Ridge penalty).
Note:

- The Ridge penalty prevents overfitting.
- We do not penalize the bias terms $b_{i}^{(l)}$.

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.
- Observations $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{R}^{s_{n_{l}}}$.

We would like to choose $W^{(l)}$ and $b^{(l)}$ in some optimal way for all l.
Let
$J(W, b ; x, y):=\frac{1}{2}\left\|h_{W, b}(x)-y\right\|_{2}^{2} \quad$ (Squared error for one sample).
Define

$$
J(W, b):=\frac{1}{m} \sum_{i=1}^{m} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\frac{\lambda}{2} \sum_{l=1}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{(l)}\right)^{2} .
$$

(average squared error with Ridge penalty).
Note:

- The Ridge penalty prevents overfitting.
- We do not penalize the bias terms $b_{i}^{(l)}$.
- The loss function $J(W, b)$ is not convex.

Some remarks

- The loss function $J(W, b)$ is often used both for regression and classification.

Some remarks

- The loss function $J(W, b)$ is often used both for regression and classification.
- In classification problems, we choose the labels $y \in\{0,1\}$ (if working with sigmoid) or $y \in\{-1,1\}$ (if working with tanh).
- The loss function $J(W, b)$ is often used both for regression and classification.
- In classification problems, we choose the labels $y \in\{0,1\}$ (if working with sigmoid) or $y \in\{-1,1\}$ (if working with tanh).
- For regression problems, we scale the output so that $y \in[0,1]$ (if working with sigmoid) or $y \in[-1,1]$ (if working with tanh).
- The loss function $J(W, b)$ is often used both for regression and classification.
- In classification problems, we choose the labels $y \in\{0,1\}$ (if working with sigmoid) or $y \in\{-1,1\}$ (if working with tanh).
- For regression problems, we scale the output so that $y \in[0,1]$ (if working with sigmoid) or $y \in[-1,1]$ (if working with tanh).
- We will use a gradient descent to minimize $J(W, b)$. Note that since the function is non-convex, we may only find a local minimum.
- The loss function $J(W, b)$ is often used both for regression and classification.
- In classification problems, we choose the labels $y \in\{0,1\}$ (if working with sigmoid) or $y \in\{-1,1\}$ (if working with tanh).
- For regression problems, we scale the output so that $y \in[0,1]$ (if working with sigmoid) or $y \in[-1,1]$ (if working with tanh).
- We will use a gradient descent to minimize $J(W, b)$. Note that since the function is non-convex, we may only find a local minimum.
- We need an initial choice for $W_{i j}^{(l)}$ and $b_{i}^{(l)}$. If we initialize all the parameters to 0 , then the parameters remain constant over the layers because of the symmetry of the problem.
- The loss function $J(W, b)$ is often used both for regression and classification.
- In classification problems, we choose the labels $y \in\{0,1\}$ (if working with sigmoid) or $y \in\{-1,1\}$ (if working with tanh).
- For regression problems, we scale the output so that $y \in[0,1]$ (if working with sigmoid) or $y \in[-1,1]$ (if working with tanh).
- We will use a gradient descent to minimize $J(W, b)$. Note that since the function is non-convex, we may only find a local minimum.
- We need an initial choice for $W_{i j}^{(l)}$ and $b_{i}^{(l)}$. If we initialize all the parameters to 0 , then the parameters remain constant over the layers because of the symmetry of the problem.
- As a result, we initialize the parameters to a small constant at random (say, using $N\left(0, \epsilon^{2}\right)$ for $\epsilon=0.01$).

Gradient descent and the backpropagation algorithm

We update the parameters using a gradient descent as follows:

$$
\begin{aligned}
W_{i j}^{(l)} & \leftarrow W_{i j}^{(l)}-\alpha \frac{\partial}{\partial W_{i j}^{(l)}} J(W, b) \\
b_{i}^{(l)} & \leftarrow b_{i}^{(l)}-\alpha \frac{\partial}{\partial b_{i}^{(l)}} J(W, b) .
\end{aligned}
$$

Here $\alpha>0$ is a parameter (the learning rate).

Gradient descent and the backpropagation algorithm

We update the parameters using a gradient descent as follows:

$$
\begin{aligned}
W_{i j}^{(l)} & \leftarrow W_{i j}^{(l)}-\alpha \frac{\partial}{\partial W_{i j}^{(l)}} J(W, b) \\
b_{i}^{(l)} & \leftarrow b_{i}^{(l)}-\alpha \frac{\partial}{\partial b_{i}^{(l)}} J(W, b)
\end{aligned}
$$

Here $\alpha>0$ is a parameter (the learning rate).
Observe that:

$$
\begin{aligned}
\frac{\partial}{\partial W_{i j}^{(l)}} J(W, b) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial W_{i j}^{(l)}} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\lambda W_{i j}^{(l)} \\
\frac{\partial}{\partial b_{i}^{(l)}} J(W, b) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial b_{i}^{(l)}} J\left(W, b ; x^{(i)}, y^{(i)}\right)
\end{aligned}
$$

Gradient descent and the backpropagation algorithm

We update the parameters using a gradient descent as follows:

$$
\begin{aligned}
W_{i j}^{(l)} & \leftarrow W_{i j}^{(l)}-\alpha \frac{\partial}{\partial W_{i j}^{(l)}} J(W, b) \\
b_{i}^{(l)} & \leftarrow b_{i}^{(l)}-\alpha \frac{\partial}{\partial b_{i}^{(l)}} J(W, b)
\end{aligned}
$$

Here $\alpha>0$ is a parameter (the learning rate).
Observe that:

$$
\begin{aligned}
\frac{\partial}{\partial W_{i j}^{(l)}} J(W, b) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial W_{i j}^{(l)}} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\lambda W_{i j}^{(l)} \\
\frac{\partial}{\partial b_{i}^{(l)}} J(W, b) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial b_{i}^{(l)}} J\left(W, b ; x^{(i)}, y^{(i)}\right)
\end{aligned}
$$

Therefore, it suffices to compute the derivatives of $J\left(W, b ; x^{(i)}, y^{(i)}\right)$.

Computing the derivatives using backpropagation

(1) Compute the activations for all the layers.

Computing the derivatives using backpropagation

(1) Compute the activations for all the layers.
(2) For each output unit i in layer n_{l} (output), compute

$$
\delta_{i}^{\left(n_{l}\right)}:=\frac{\partial}{\partial z_{i}^{\left(n_{l}\right)}} \frac{1}{2}\left\|y-h_{W, b}(x)\right\|_{2}^{2}=-\left(y_{i}-a_{i}^{\left(n_{l}\right)}\right) \cdot f^{\prime}\left(z_{i}^{n_{l}}\right) .
$$

Computing the derivatives using backpropagation

(1) Compute the activations for all the layers.
(2) For each output unit i in layer n_{l} (output), compute

$$
\delta_{i}^{\left(n_{l}\right)}:=\frac{\partial}{\partial z_{i}^{\left(n_{l}\right)}} \frac{1}{2}\left\|y-h_{W, b}(x)\right\|_{2}^{2}=-\left(y_{i}-a_{i}^{\left(n_{l}\right)}\right) \cdot f^{\prime}\left(z_{i}^{n_{l}}\right) .
$$

(3) For $l=n_{l}-1, n_{l}-2, \ldots, 2$

For each node i in layer l, set

$$
\delta_{i}^{(l)}:=\left(\sum_{j=1}^{s_{l+1}} W_{j i}^{(l)} \delta_{j}^{(l+1)}\right) \cdot f^{\prime}\left(z_{i}^{(l)}\right)
$$

Computing the derivatives using backpropagation

(1) Compute the activations for all the layers.
(2) For each output unit i in layer n_{l} (output), compute

$$
\delta_{i}^{\left(n_{l}\right)}:=\frac{\partial}{\partial z_{i}^{\left(n_{l}\right)}} \frac{1}{2}\left\|y-h_{W, b}(x)\right\|_{2}^{2}=-\left(y_{i}-a_{i}^{\left(n_{l}\right)}\right) \cdot f^{\prime}\left(z_{i}^{n_{l}}\right) .
$$

(3) For $l=n_{l}-1, n_{l}-2, \ldots, 2$

For each node i in layer l, set

$$
\delta_{i}^{(l)}:=\left(\sum_{j=1}^{s_{l+1}} W_{j i}^{(l)} \delta_{j}^{(l+1)}\right) \cdot f^{\prime}\left(z_{i}^{(l)}\right)
$$

(1) Compute the desired partial derivatives:

$$
\begin{gathered}
\frac{\partial}{\partial W_{i j}^{(l)}} J\left(W, b ; x^{(i)}, y^{(i)}\right)=a_{j}^{(l)} \delta_{i}^{(l+1)} \\
\frac{\partial}{\partial b_{i}^{(l)}} J\left(W, b ; x^{(i)}, y^{(i)}\right)=\delta_{i}^{(l+1)}
\end{gathered}
$$

Autoencoders

An autoencoder learns the identity function:

- Input: unlabeled data.
- Output = input.
- Idea: limit the number of hidden layers to discover structure in the data.
- Learn a compressed representation of the input.

Layer L_{1}
Source: UFLDL tutorial.
Can also learn a sparse network by including supplementary constraints on the weights.

Example (UFLDL)

- Train an autoencoder on 10×10 images with one hidden layer.

Example (UFLDL)

- Train an autoencoder on 10×10 images with one hidden layer.
- Each hidden unit i computes:

$$
a_{i}^{(2)}=f\left(\sum_{j=1}^{100} W_{i j}^{(1)} x_{j}+b_{j}^{(1)}\right)
$$

Example (UFLDL)

- Train an autoencoder on 10×10 images with one hidden layer.
- Each hidden unit i computes:

$$
a_{i}^{(2)}=f\left(\sum_{j=1}^{100} W_{i j}^{(1)} x_{j}+b_{j}^{(1)}\right)
$$

- Think of $a_{i}^{(2)}$ as some non-linear feature of the input x.

Example (UFLDL)

- Train an autoencoder on 10×10 images with one hidden layer.
- Each hidden unit i computes:

$$
a_{i}^{(2)}=f\left(\sum_{j=1}^{100} W_{i j}^{(1)} x_{j}+b_{j}^{(1)}\right)
$$

- Think of $a_{i}^{(2)}$ as some non-linear feature of the input x.

Problem: Find x that maximally activates $a_{i}^{(2)}$ over $\|x\|_{2} \leq 1$.

Example (UFLDL)

- Train an autoencoder on 10×10 images with one hidden layer.
- Each hidden unit i computes:

$$
a_{i}^{(2)}=f\left(\sum_{j=1}^{100} W_{i j}^{(1)} x_{j}+b_{j}^{(1)}\right)
$$

- Think of $a_{i}^{(2)}$ as some non-linear feature of the input x.

Problem: Find x that maximally activates $a_{i}^{(2)}$ over $\|x\|_{2} \leq 1$.
Claim:

$$
x_{j}=\frac{W_{i j}^{(1)}}{\sqrt{\sum_{j=1}^{100}\left(W_{i j}^{(1)}\right)^{2}}} .
$$

Example (UFLDL)

- Train an autoencoder on 10×10 images with one hidden layer.
- Each hidden unit i computes:

$$
a_{i}^{(2)}=f\left(\sum_{j=1}^{100} W_{i j}^{(1)} x_{j}+b_{j}^{(1)}\right)
$$

- Think of $a_{i}^{(2)}$ as some non-linear feature of the input x.

Problem: Find x that maximally activates $a_{i}^{(2)}$ over $\|x\|_{2} \leq 1$.
Claim:

$$
x_{j}=\frac{W_{i j}^{(1)}}{\sqrt{\sum_{j=1}^{100}\left(W_{i j}^{(1)}\right)^{2}}}
$$

(Hint: Use Cauchy-Schwarz).
We can now display the image maximizing $a_{i}^{(2)}$ for each i.

Example (cont.)

100 hidden units on 10×10 pixel inputs:

The different hidden units have learned to detect edges at different positions and orientations in the image.

Sparse neural networks

- So far we discussed dense neural networks.

Sparse neural networks

- So far we discussed dense neural networks.
- Dense networks have a lot of parameters to learn. Can be inefficient or impossible to train.

Sparse neural networks

- So far we discussed dense neural networks.
- Dense networks have a lot of parameters to learn. Can be inefficient or impossible to train.
- Sparse models have been proposed in the literature.

Sparse neural networks

- So far we discussed dense neural networks.
- Dense networks have a lot of parameters to learn. Can be inefficient or impossible to train.
- Sparse models have been proposed in the literature.
- Some of these models find inspiration from how the early visual system is wired up in biology.
layer $m+1$
layer m
layer m-I

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.
- For example, images often have similar statistical properties in different regions in space.

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.
- For example, images often have similar statistical properties in different regions in space.
- That suggests that the features that we learn at one part of an image can also be applied to other parts of the image.

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.
- For example, images often have similar statistical properties in different regions in space.
- That suggests that the features that we learn at one part of an image can also be applied to other parts of the image.
- Can "convolve" the learned features with the larger image.

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.
- For example, images often have similar statistical properties in different regions in space.
- That suggests that the features that we learn at one part of an image can also be applied to other parts of the image.
- Can "convolve" the learned features with the larger image.

Example: 96×96 image.

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.
- For example, images often have similar statistical properties in different regions in space.
- That suggests that the features that we learn at one part of an image can also be applied to other parts of the image.
- Can "convolve" the learned features with the larger image.

Example: 96×96 image.

- Learn features on small 8×8 patches sampled randomly (e.g. using a sparse autoencoder).

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.
- For example, images often have similar statistical properties in different regions in space.
- That suggests that the features that we learn at one part of an image can also be applied to other parts of the image.
- Can "convolve" the learned features with the larger image.

Example: 96×96 image.

- Learn features on small 8×8 patches sampled randomly (e.g. using a sparse autoencoder).
- Run the trained model through all 8×8 patches of the image to get the feature activations.

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.
- For example, images often have similar statistical properties in different regions in space.
- That suggests that the features that we learn at one part of an image can also be applied to other parts of the image.
- Can "convolve" the learned features with the larger image.

Example: 96×96 image.

- Learn features on small 8×8 patches sampled randomly (e.g. using a sparse autoencoder).
- Run the trained model through all 8×8 patches of the image to get the feature activations.

1	1	1	0	0
0	1	1	1	0
0	0	1_{x}	1_{x}	1_{x}
0	0	1_{x}	1_{x}	O_{x}
0	1	1_{x}	$0_{n 0}$	O_{x}

Image

4	3	4
2	4	3
2	3	4

Convolved
Feature

Pooling features

- Once can also pool the features obtained via convolution.

Pooling features

- Once can also pool the features obtained via convolution.
- For example, to describe a large image, one natural approach is to aggregate statistics of these features at various locations.
- Once can also pool the features obtained via convolution.
- For example, to describe a large image, one natural approach is to aggregate statistics of these features at various locations.
- E.g. compute the mean, max, etc. over different regions.
- Once can also pool the features obtained via convolution.
- For example, to describe a large image, one natural approach is to aggregate statistics of these features at various locations.
- E.g. compute the mean, max, etc. over different regions.
- Can lead to more robust features. Can lead to invariant features.
- Once can also pool the features obtained via convolution.
- For example, to describe a large image, one natural approach is to aggregate statistics of these features at various locations.
- E.g. compute the mean, max, etc. over different regions.
- Can lead to more robust features. Can lead to invariant features.
- For example, if the pooling regions are contiguous, then the pooling units will be "translation invariant", i.e., they won't change much if objects in the image are undergo a (small) translation.
- Once can also pool the features obtained via convolution.
- For example, to describe a large image, one natural approach is to aggregate statistics of these features at various locations.
- E.g. compute the mean, max, etc. over different regions.
- Can lead to more robust features. Can lead to invariant features.
- For example, if the pooling regions are contiguous, then the pooling units will be "translation invariant", i.e., they won't change much if objects in the image are undergo a (small) translation.

Convolved Pooled feature feature

Neural networks with scikit-learn

Need to install the 0.18 -dev version (http://scikit-learn.org/stable/developers/ contributing.html\#retrieving-the-latest-code).

- sklearn.neural_network.MLPClassifier
- sklearn.neural_network.MLPRegressor

