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Missing values in data

Missing data is a common problem in statistics.

No measurement for a given individual/time/location, etc.

Device failed.

Error in data entry.

Data was not disclosed for privacy reasons.

etc.

Missing values in the titanic passengers dataset.

How can we deal with missing values?

Many possible procedures.

The choice of the procedure can signi�cantly impact the
conclusions of a study.
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Some strategies for dealing with missing values

Some options for dealing with missing values:

Deletion (delete observations, remove variable, etc.).
Solves the problem, but ignores some of the data (can be
signi�cant). May lead to ignoring an entire �category� of
observations. Can generate signi�cant bias.

Interpolation.

Sometimes it is possible to interpolate missing values (e.g.
timeseries). However, we need enough data to be able to
produce a good interpolation. In some problems, interpolation
is not an option (e.g. age in the titanic passenger data).

Replace missing value with mean.

May introduce bias. Only valid for numerical observations.

Imputation with the EM algorithm.

Replace missing values by the most likely values. Account for
all information available. Much more rigorous. However,
requires a model. Can be computationally intensive.
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Missing data mechanism

�Types� of missing data:

1 Missing completely at random (MCAR): The events that
lead to a missing value are independent both of observable
variables and of the unobservable parameters of interest, and
occur entirely at random. (Rarely the case in practice.)

2 Missing at random (MAR): missingness is not random, but
can be fully accounted for by observed values.

3 Missing not at random (MNAR): neither MAR nor MCAR.

Example: a study about people's weight. We measure (weight,
sex).

Some respondent may not answer the survey for no particular
reason. MCAR

Maybe women are less likely to answer than male
(independently of their weight). MAR

Heavy or light people may be less likely to disclose their
weight. MNAR.
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Example

Suppose we have independent observations of a discrete

random vector X = (X1, X2, X3, X4) taking values in
{0, 1, 2, 3}.

X1 X2 X3 X4

2 0 2 3
3 NA 1 1
1 3 NA NA
2 NA 1 NA

Let p(x1, x2, x3, x4) = P (X1 = x1, X2 = x2, X3 = x3, X4 = x4)

be the pmf of X.

Ignoring the missing data mechanism, we have

p(x1,NA, x3, x4) =

3∑
x=0

p(x1, x, x2, x3).
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Example (cont.)

Suppose the data comes from a parametric model
p(x1, x2, x3, x4; θ) where θ ∈ Θ is unknown.

X1 X2 X3 X4

2 0 2 3
3 NA 1 1
1 3 NA NA
2 NA 1 NA

We compute the likelihood of the data:

L(θ) = p(2, 0, 2, 3)× p1,3,4(3, 1, 1)× p1,2(1, 3)× p1,3(2, 1),

where p1,3,4(x1, x3, x4) =
∑3

x2=0 p(x1, x2, x3, x4),

p1,2(x1, x2) =
∑3

x3=0

∑3
x4=0 p(x1, x2, x3, x4), and

p1,3(x1, x3) =
∑3

x2=0

∑3
x4=0 p(x1, x2, x3, x4) denote

marginals of p.

The likelihood can now be maximized as a function of θ.
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Imputing the missing values

Recall that f(x) = E(Y |X = x) has the following optimality
property:

E(Y |X = x) = argmin
c∈R

E(Y − c)2

where c is some function of x.

So E(Y |X = x) is the �best prediction� of Y given X in the
mean squared error sense.

As a result, once p(x; θ) is known (after estimating θ by
maximum likelihood for example), we can impute missing values
using:

x̂miss = E(xmiss|xobserved).

For example, if x = (1, 3,NA,NA) then:

(x̂3, x̂4) = E((X3, X4)|X1 = 1, X2 = 3),

where E is computed with respect to p(x1, x2, x3, x4; θ).
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Summary

In summary, given a family of probability models p(x; θ) for the
data, under MAR, we can:

1 Compute the likelihood of θ by marginalizing over the missing
values.

2 Estimate the parameter θ by maximum likelihood.

3 Impute missing values using x̂miss = Eθ(xmiss|xobserved),
where Eθ denotes the expected value with respect to the
probability distribution pθ.

Remark: We assumed above that the variables are discrete, and
the observations are independent for simplicity. The same
procedure applied in the general case.

8/11



Summary

In summary, given a family of probability models p(x; θ) for the
data, under MAR, we can:

1 Compute the likelihood of θ by marginalizing over the missing
values.

2 Estimate the parameter θ by maximum likelihood.

3 Impute missing values using x̂miss = Eθ(xmiss|xobserved),
where Eθ denotes the expected value with respect to the
probability distribution pθ.

Remark: We assumed above that the variables are discrete, and
the observations are independent for simplicity. The same
procedure applied in the general case.

8/11



Summary

In summary, given a family of probability models p(x; θ) for the
data, under MAR, we can:

1 Compute the likelihood of θ by marginalizing over the missing
values.

2 Estimate the parameter θ by maximum likelihood.

3 Impute missing values using x̂miss = Eθ(xmiss|xobserved),
where Eθ denotes the expected value with respect to the
probability distribution pθ.

Remark: We assumed above that the variables are discrete, and
the observations are independent for simplicity. The same
procedure applied in the general case.

8/11



Summary

In summary, given a family of probability models p(x; θ) for the
data, under MAR, we can:

1 Compute the likelihood of θ by marginalizing over the missing
values.

2 Estimate the parameter θ by maximum likelihood.

3 Impute missing values using x̂miss = Eθ(xmiss|xobserved),
where Eθ denotes the expected value with respect to the
probability distribution pθ.

Remark: We assumed above that the variables are discrete, and
the observations are independent for simplicity. The same
procedure applied in the general case.

8/11



Summary

In summary, given a family of probability models p(x; θ) for the
data, under MAR, we can:

1 Compute the likelihood of θ by marginalizing over the missing
values.

2 Estimate the parameter θ by maximum likelihood.

3 Impute missing values using x̂miss = Eθ(xmiss|xobserved),
where Eθ denotes the expected value with respect to the
probability distribution pθ.

Remark: We assumed above that the variables are discrete, and
the observations are independent for simplicity. The same
procedure applied in the general case.

8/11



Problems

The methodology described so far solves our missing data
problem in principle.

However, explicitly �nding the maximum of the likelihood
function can be very di�cult.
The Expectation-Maximization (EM) algorithm of Dempster,

Laird, and Rubin, 1977 provides a more e�cient way of solving the
problem.

The EM algorithm leverages the fact the the likelihood is often easy
to maximize if there is no missing values.
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The EM algorithm

For simplicity, we will assume our observations are independent and
the random variables are discrete.

Some notation:

We have a random vector W taking values in Rp.
The distribution of the vector is p(w; θ).
We want to estimate θ.
We only observe a part of the vector

(x(i), z(i)) ∈ Rpi × Rp−pi (i = 1, . . . , n).

So x(i) is the observed part and z(i) is the unobserved part.
The log-likelihood function is given by

l(θ) =

n∑
i=1

log p(x(i); θ) =

n∑
i=1

log
∑
z(i)

p(x(i), z(i); θ).

(the second sum is over all the possible values of z(i)).

We would like to maximize that function over θ (generally
di�cult).
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di�cult).
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The EM algorithm (cont.)

Instead of trying to maximize the log-likelihood directly, the EM
algorithm constructs a sequence of approximations θ(i) of θ.

Let θ(0) be an initial guess for θ.
Given the current estimate θ(i) of θ, compute

Q(θ|θ(i)) := Ez|x;θ(i) log p(x, z; θ)

=

n∑
i=1

Ez(i)|x(i);θ(i)

(
log p(x(i), z(i); θ)

)
(E step)

(In other words, we average the missing values according to their
distribution after observing the observed values.)

We then optimize Q(θ|θ(i)) with respect to θ:

θ(i+1) := argmax
θ

Q(θ|θ(i)) (M step).

Theorem: The sequence θ(i) constructed by the EM algorithm
satis�es:

l(θ(i+1)) ≥ l(θ(i)).
Remark: There is no guarantee that the EM algorithm will �nd the
global max of the likelihood. It may only �nd a local max.
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