MATH 829: Introduction to Data Mining and Analysis Independent component analysis

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

April 22, 2016

Motivation

- Blind signal separation: separation of a mixture of source signals, without (or with very little) information about the sources and the mixing process.

Motivation

- Blind signal separation: separation of a mixture of source signals, without (or with very little) information about the sources and the mixing process.
- Example (the cocktail party problem): isolate a single conversation in a noisy room with many people talking.

Motivation

- Blind signal separation: separation of a mixture of source signals, without (or with very little) information about the sources and the mixing process.
- Example (the cocktail party problem): isolate a single conversation in a noisy room with many people talking.

Sources

Receivers

$$
\begin{aligned}
& x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t) \\
& x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t) \\
& x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)
\end{aligned}
$$

- We have $x(t)=A s(t), t=1, \ldots, T$.

$$
\begin{aligned}
& x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t) \\
& x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)
\end{aligned}
$$

- We have $x(t)=A s(t), t=1, \ldots, T$.
- We observe $x(t)$.

Mathematical formulation

$$
\begin{aligned}
& x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t) \\
& x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)
\end{aligned}
$$

- We have $x(t)=A s(t), t=1, \ldots, T$.
- We observe $x(t)$.
- We don't know what A is (mixing matrix).

Mathematical formulation

$$
\begin{aligned}
& x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t) \\
& x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)
\end{aligned}
$$

- We have $x(t)=A s(t), t=1, \ldots, T$.
- We observe $x(t)$.
- We don't know what A is (mixing matrix).
- We don't observe $s(t)$.

$$
\begin{aligned}
& x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t) \\
& x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)
\end{aligned}
$$

- We have $x(t)=A s(t), t=1, \ldots, T$.
- We observe $x(t)$.
- We don't know what A is (mixing matrix).
- We don't observe $s(t)$.

We want to recover $s(t)$ (and/or A).

$$
\begin{aligned}
& \begin{array}{l}
x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t) \\
x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)
\end{array}
\end{aligned}
$$

- We have $x(t)=A s(t), t=1, \ldots, T$.
- We observe $x(t)$.
- We don't know what A is (mixing matrix).
- We don't observe $s(t)$.

We want to recover $s(t)$ (and/or A).

- Current formulation is ill-posed: there are multiple ways of mixing signals to get the output.

- We have $x(t)=A s(t), t=1, \ldots, T$.
- We observe $x(t)$.
- We don't know what A is (mixing matrix).
- We don't observe $s(t)$.

We want to recover $s(t)$ (and/or A).

- Current formulation is ill-posed: there are multiple ways of mixing signals to get the output.
- We will seek a solution where the components of s are as independent as possible.

Assumptions

Note: Signals can only be recovered up to
(1) Permutations: we can always permute the s_{i} 's and the row/columns of A to obtain new solutions.

Assumptions

Note: Signals can only be recovered up to
(1) Permutations: we can always permute the s_{i} 's and the row/columns of A to obtain new solutions.
(2) Scaling: we can always rescale the s_{i} 's and rescale the coefficients in A.

Assumptions

Note: Signals can only be recovered up to
(1) Permutations: we can always permute the s_{i} 's and the row/columns of A to obtain new solutions.
(2) Scaling: we can always rescale the s_{i} 's and rescale the coefficients in A.
(Not a big deal in most applications.)

Assumptions

Note: Signals can only be recovered up to
(1) Permutations: we can always permute the s_{i} 's and the row/columns of A to obtain new solutions.
(2) Scaling: we can always rescale the s_{i} 's and rescale the coefficients in A.
(Not a big deal in most applications.) Other problems?

Assumptions

Note: Signals can only be recovered up to
(1) Permutations: we can always permute the s_{i} 's and the row/columns of A to obtain new solutions.
(2) Scaling: we can always rescale the s_{i} 's and rescale the coefficients in A.
(Not a big deal in most applications.) Other problems?
Problem with Gaussian data:

- Suppose $s \sim N\left(\mathbf{0}_{2 \times 1}, I_{2 \times 2}\right)$ (independent Gaussian sources).

Assumptions

Note: Signals can only be recovered up to
(1) Permutations: we can always permute the s_{i} 's and the row/columns of A to obtain new solutions.
(2) Scaling: we can always rescale the s_{i} 's and rescale the coefficients in A.
(Not a big deal in most applications.) Other problems?
Problem with Gaussian data:

- Suppose $s \sim N\left(\mathbf{0}_{2 \times 1}, I_{2 \times 2}\right)$ (independent Gaussian sources).
- Let $x=A s$ where $A \in \mathbb{R}^{2 \times 2}$.

Assumptions

Note: Signals can only be recovered up to
(1) Permutations: we can always permute the s_{i} 's and the row/columns of A to obtain new solutions.
(2) Scaling: we can always rescale the s_{i} 's and rescale the coefficients in A.
(Not a big deal in most applications.) Other problems?
Problem with Gaussian data:

- Suppose $s \sim N\left(\mathbf{0}_{2 \times 1}, I_{2 \times 2}\right)$ (independent Gaussian sources).
- Let $x=A s$ where $A \in \mathbb{R}^{2 \times 2}$.
- Then $x \sim N\left(\mathbf{0}_{2 \times 1}, A A^{T}\right)$.

Assumptions

Note: Signals can only be recovered up to
(1) Permutations: we can always permute the s_{i} 's and the row/columns of A to obtain new solutions.
(2) Scaling: we can always rescale the s_{i} 's and rescale the coefficients in A.
(Not a big deal in most applications.) Other problems?
Problem with Gaussian data:

- Suppose $s \sim N\left(\mathbf{0}_{2 \times 1}, I_{2 \times 2}\right)$ (independent Gaussian sources).
- Let $x=A s$ where $A \in \mathbb{R}^{2 \times 2}$.
- Then $x \sim N\left(\mathbf{0}_{2 \times 1}, A A^{T}\right)$.
- Let U be an orthogonal matrix, i.e., $U U^{T}=U^{T} U=I$.

Assumptions

Note: Signals can only be recovered up to
(1) Permutations: we can always permute the s_{i} 's and the row/columns of A to obtain new solutions.
(2) Scaling: we can always rescale the s_{i} 's and rescale the coefficients in A.
(Not a big deal in most applications.) Other problems?
Problem with Gaussian data:

- Suppose $s \sim N\left(\mathbf{0}_{2 \times 1}, I_{2 \times 2}\right)$ (independent Gaussian sources).
- Let $x=A s$ where $A \in \mathbb{R}^{2 \times 2}$.
- Then $x \sim N\left(\mathbf{0}_{2 \times 1}, A A^{T}\right)$.
- Let U be an orthogonal matrix, i.e., $U U^{T}=U^{T} U=I$.
- Let $A^{\prime}=A U$.

Assumptions

Note: Signals can only be recovered up to
(1) Permutations: we can always permute the s_{i} 's and the row/columns of A to obtain new solutions.
(2) Scaling: we can always rescale the s_{i} 's and rescale the coefficients in A.
(Not a big deal in most applications.) Other problems?

Problem with Gaussian data:

- Suppose $s \sim N\left(\mathbf{0}_{2 \times 1}, I_{2 \times 2}\right)$ (independent Gaussian sources).
- Let $x=A s$ where $A \in \mathbb{R}^{2 \times 2}$.
- Then $x \sim N\left(\mathbf{0}_{2 \times 1}, A A^{T}\right)$.
- Let U be an orthogonal matrix, i.e., $U U^{T}=U^{T} U=I$.
- Let $A^{\prime}=A U$.
- Then $x^{\prime}=A^{\prime} s \sim N\left(\mathbf{0}_{2 \times 1}, A^{\prime} A^{T}\right)=N\left(\mathbf{0}_{2 \times 1}, A U U^{T} A^{T}\right)=$ $N\left(\mathbf{0}_{2 \times 1}, A A^{T}\right)$.

Assumptions

Note: Signals can only be recovered up to
(1) Permutations: we can always permute the s_{i} 's and the row/columns of A to obtain new solutions.
(2) Scaling: we can always rescale the s_{i} 's and rescale the coefficients in A.
(Not a big deal in most applications.) Other problems?

Problem with Gaussian data:

- Suppose $s \sim N\left(\mathbf{0}_{2 \times 1}, I_{2 \times 2}\right)$ (independent Gaussian sources).
- Let $x=A s$ where $A \in \mathbb{R}^{2 \times 2}$.
- Then $x \sim N\left(\mathbf{0}_{2 \times 1}, A A^{T}\right)$.
- Let U be an orthogonal matrix, i.e., $U U^{T}=U^{T} U=I$.
- Let $A^{\prime}=A U$.
- Then $x^{\prime}=A^{\prime} s \sim N\left(\mathbf{0}_{2 \times 1}, A^{\prime} A^{T}\right)=N\left(\mathbf{0}_{2 \times 1}, A U U^{T} A^{T}\right)=$ $N\left(\mathbf{0}_{2 \times 1}, A A^{T}\right)$.
Thus, there is no way to statistically differentiate if x was obtained from the mixing matrix A or A^{\prime}.

Assumptions

Note: Signals can only be recovered up to
(1) Permutations: we can always permute the s_{i} 's and the row/columns of A to obtain new solutions.
(2) Scaling: we can always rescale the s_{i} 's and rescale the coefficients in A.
(Not a big deal in most applications.) Other problems?
Problem with Gaussian data:

- Suppose $s \sim N\left(\mathbf{0}_{2 \times 1}, I_{2 \times 2}\right)$ (independent Gaussian sources).
- Let $x=A s$ where $A \in \mathbb{R}^{2 \times 2}$.
- Then $x \sim N\left(\mathbf{0}_{2 \times 1}, A A^{T}\right)$.
- Let U be an orthogonal matrix, i.e., $U U^{T}=U^{T} U=I$.
- Let $A^{\prime}=A U$.
- Then $x^{\prime}=A^{\prime} s \sim N\left(\mathbf{0}_{2 \times 1}, A^{\prime} A^{T}\right)=N\left(\mathbf{0}_{2 \times 1}, A U U^{T} A^{T}\right)=$ $N\left(\mathbf{0}_{2 \times 1}, A A^{T}\right)$.
Thus, there is no way to statistically differentiate if x was obtained from the mixing matrix A or A^{\prime}.
We will therefore assume the sources are not Gaussian.

Independence of the sources

- We seek sources that are as independent as possible.

Independence of the sources

- We seek sources that are as independent as possible.
- Multiple ways to measure independence. For example:

Independence of the sources

- We seek sources that are as independent as possible.
- Multiple ways to measure independence. For example:
(1) Minimization of mutual information.

Independence of the sources

- We seek sources that are as independent as possible.
- Multiple ways to measure independence. For example:
(1) Minimization of mutual information.
(2) Maximization of non-Gaussianity measures (negentropy, kurtosis, etc.).

Independence of the sources

- We seek sources that are as independent as possible.
- Multiple ways to measure independence. For example:
(1) Minimization of mutual information.
(2) Maximization of non-Gaussianity measures (negentropy, kurtosis, etc.).
Motivation for (2) comes from the central limit theorem: a sum of independent random variables should be "more Gaussian".

Independence of the sources

- We seek sources that are as independent as possible.
- Multiple ways to measure independence. For example:
(1) Minimization of mutual information.
(2) Maximization of non-Gaussianity measures (negentropy, kurtosis, etc.).
Motivation for (2) comes from the central limit theorem: a sum of independent random variables should be "more Gaussian".

To explain the above notions, we briefly discuss some concepts from information theory.

Entropy of a random variable

- Let X be a random variable taking values x_{1}, \ldots, x_{N} with probabilities $P\left(X=x_{i}\right)=p_{i}$.

Entropy of a random variable

- Let X be a random variable taking values x_{1}, \ldots, x_{N} with probabilities $P\left(X=x_{i}\right)=p_{i}$.
- The entropy of X is given by:

$$
H(X)=E(-\log p)=-\sum_{i=1}^{N} p_{i} \log p_{i}
$$

(usually, we take the log in base 2).

- Let X be a random variable taking values x_{1}, \ldots, x_{N} with probabilities $P\left(X=x_{i}\right)=p_{i}$.
- The entropy of X is given by:

$$
H(X)=E(-\log p)=-\sum_{i=1}^{N} p_{i} \log p_{i}
$$

(usually, we take the \log in base 2).

- Similarly, if X is a continuous random variable with density $f(x)$, we define:

$$
H(X)=-\int f(x) \log f(x) d x
$$

- Let X be a random variable taking values x_{1}, \ldots, x_{N} with probabilities $P\left(X=x_{i}\right)=p_{i}$.
- The entropy of X is given by:

$$
H(X)=E(-\log p)=-\sum_{i=1}^{N} p_{i} \log p_{i}
$$

(usually, we take the \log in base 2).

- Similarly, if X is a continuous random variable with density $f(x)$, we define:

$$
H(X)=-\int f(x) \log f(x) d x
$$

The entropy is a measure of the uncertainty or complexity of a random variable.

- Let X be a random variable taking values x_{1}, \ldots, x_{N} with probabilities $P\left(X=x_{i}\right)=p_{i}$.
- The entropy of X is given by:

$$
H(X)=E(-\log p)=-\sum_{i=1}^{N} p_{i} \log p_{i}
$$

(usually, we take the \log in base 2).

- Similarly, if X is a continuous random variable with density $f(x)$, we define:

$$
H(X)=-\int f(x) \log f(x) d x
$$

The entropy is a measure of the uncertainty or complexity of a random variable.
Example: If X is a (discrete) uniform on $\{1, \ldots, N\}$, then

$$
H(X)=-\sum_{i=1}^{N} \frac{1}{N} \log \left(\frac{1}{N}\right)=\log N
$$

Example: $X \sim \operatorname{Bernoulli}(p)$, i.e., $P(X=1)=p$, $P(X=0)=1-p$. The more "uncertain" the outcome is, the larger the entropy.

Entropy and information

We would like to define a measure of information $I(p)$ of an event occurring with probability p. This functions should satisfy:

We would like to define a measure of information $I(p)$ of an event occurring with probability p. This functions should satisfy:

- $I(p) \geq 0$.
- $I(1)=0$ (the information gained from observing a certain event is 0).
- $I\left(p_{1} p_{2}\right)=I\left(p_{1}\right)+I\left(p_{2}\right)$ (information gained from observing two independent event is sum of information).
- I should be continuous and monotonic.

We would like to define a measure of information $I(p)$ of an event occurring with probability p. This functions should satisfy:

- $I(p) \geq 0$.
- $I(1)=0$ (the information gained from observing a certain event is 0).
- $I\left(p_{1} p_{2}\right)=I\left(p_{1}\right)+I\left(p_{2}\right)$ (information gained from observing two independent event is sum of information).
- I should be continuous and monotonic.

The above properties imply $I(p)=\log _{b} \frac{1}{p}$ for some base b.

We would like to define a measure of information $I(p)$ of an event occurring with probability p. This functions should satisfy:

- $I(p) \geq 0$.
- $I(1)=0$ (the information gained from observing a certain event is 0).
- $I\left(p_{1} p_{2}\right)=I\left(p_{1}\right)+I\left(p_{2}\right)$ (information gained from observing two independent event is sum of information).
- I should be continuous and monotonic.

The above properties imply $I(p)=\log _{b} \frac{1}{p}$ for some base b.
The entropy of X is the average information "contained" in X :

$$
H(X)=\sum_{i=1}^{N} I\left(p_{i}\right) p_{i}
$$

Entropy and communication

- Suppose we can only transmit 0 s and 1 s .
- We need to encode our message (e.g. choose a code for each letter).
- How efficiently can we encore the message?
- Suppose we can only transmit 0 s and 1 s .
- We need to encode our message (e.g. choose a code for each letter).
- How efficiently can we encore the message?

- Suppose we can only transmit 0 s and 1 s .
- We need to encode our message (e.g. choose a code for each letter).
- How efficiently can we encore the message?

Example: Our source sends the letters A, B, C, D. Each letter is equally likely to be transmitted.

$$
\begin{array}{ll}
A \rightarrow 00 & C \rightarrow 10 \\
B \rightarrow 01 & D \rightarrow 11
\end{array}
$$

We send on average (actually, exactly!) 2 bits per symbol.

- Suppose we can only transmit 0s and 1 s .
- We need to encode our message (e.g. choose a code for each letter).
- How efficiently can we encore the message?

Example: Our source sends the letters A, B, C, D. Each letter is equally likely to be transmitted.

$$
\begin{array}{ll}
A \rightarrow 00 & C \rightarrow 10 \\
B \rightarrow 01 & D \rightarrow 11
\end{array}
$$

We send on average (actually, exactly!) 2 bits per symbol.

- If the symbols an not equally likely, it is not hard to see that one can do better (i.e., send less bits per symbol on average).
- Suppose we can only transmit 0s and 1 s .
- We need to encode our message (e.g. choose a code for each letter).
- How efficiently can we encore the message?

Example: Our source sends the letters A, B, C, D. Each letter is equally likely to be transmitted.

$$
\begin{array}{ll}
A \rightarrow 00 & C \rightarrow 10 \\
B \rightarrow 01 & D \rightarrow 11
\end{array}
$$

We send on average (actually, exactly!) 2 bits per symbol.

- If the symbols an not equally likely, it is not hard to see that one can do better (i.e., send less bits per symbol on average).
- The entropy provides a lower bound on the average number of bits required per symbol.

Kullback-Leibler divergence

Given two (discrete) probability distributions P and Q, we define the Kullback-Leibler divergence by

$$
D_{\mathrm{KL}}(P \| Q):=\sum_{i} P(i) \log \frac{P(i)}{Q(i)} .
$$

Kullback-Leibler divergence

Given two (discrete) probability distributions P and Q, we define the Kullback-Leibler divergence by

$$
D_{\mathrm{KL}}(P \| Q):=\sum_{i} P(i) \log \frac{P(i)}{Q(i)}
$$

Similarly, when P and Q are continuous with densities $p(x)$ and $q(x)$ respectively, we define

$$
D_{\mathrm{KL}}(P \| Q):=\int p(x) \log \frac{p(x)}{q(x)} d x
$$

Kullback-Leibler divergence

Given two (discrete) probability distributions P and Q, we define the Kullback-Leibler divergence by

$$
D_{\mathrm{KL}}(P \| Q):=\sum_{i} P(i) \log \frac{P(i)}{Q(i)} .
$$

Similarly, when P and Q are continuous with densities $p(x)$ and $q(x)$ respectively, we define

$$
D_{\mathrm{KL}}(P \| Q):=\int p(x) \log \frac{p(x)}{q(x)} d x .
$$

Intuitive interpretation:

- A source send symbols with distribution P.

Kullback-Leibler divergence

Given two (discrete) probability distributions P and Q, we define the Kullback-Leibler divergence by

$$
D_{\mathrm{KL}}(P \| Q):=\sum_{i} P(i) \log \frac{P(i)}{Q(i)} .
$$

Similarly, when P and Q are continuous with densities $p(x)$ and $q(x)$ respectively, we define

$$
D_{\mathrm{KL}}(P \| Q):=\int p(x) \log \frac{p(x)}{q(x)} d x .
$$

Intuitive interpretation:

- A source send symbols with distribution P.
- We encode the messages as if the source had distribution Q.

Kullback-Leibler divergence

Given two (discrete) probability distributions P and Q, we define the Kullback-Leibler divergence by

$$
D_{\mathrm{KL}}(P \| Q):=\sum_{i} P(i) \log \frac{P(i)}{Q(i)}
$$

Similarly, when P and Q are continuous with densities $p(x)$ and $q(x)$ respectively, we define

$$
D_{\mathrm{KL}}(P \| Q):=\int p(x) \log \frac{p(x)}{q(x)} d x
$$

Intuitive interpretation:

- A source send symbols with distribution P.
- We encode the messages as if the source had distribution Q.
- $D_{\mathrm{KL}}(P \| Q)$ is the number of supplementary bits per symbol that we send for not using the "right" distribution.

Kullback-Leibler divergence

Given two (discrete) probability distributions P and Q, we define the Kullback-Leibler divergence by

$$
D_{\mathrm{KL}}(P \| Q):=\sum_{i} P(i) \log \frac{P(i)}{Q(i)}
$$

Similarly, when P and Q are continuous with densities $p(x)$ and $q(x)$ respectively, we define

$$
D_{\mathrm{KL}}(P \| Q):=\int p(x) \log \frac{p(x)}{q(x)} d x
$$

Intuitive interpretation:

- A source send symbols with distribution P.
- We encode the messages as if the source had distribution Q.
- $D_{\mathrm{KL}}(P \| Q)$ is the number of supplementary bits per symbol that we send for not using the "right" distribution.
The KL divergence is used as a measure of distance between distributions (note however that $D_{\mathrm{KL}}(P \| Q) \neq D_{\mathrm{KL}}(Q \| P)$ in general).

Mutual information

- $\left(X_{1}, \ldots, X_{n}\right)$ random vector with distribution $p\left(x_{1}, \ldots, x_{n}\right)$.

Mutual information

- $\left(X_{1}, \ldots, X_{n}\right)$ random vector with distribution $p\left(x_{1}, \ldots, x_{n}\right)$.
- Let $p\left(x_{1}\right), \ldots, p\left(x_{n}\right)$ denote the marginals of p (i.e., the distribution of each variable X_{i}).

Mutual information

- $\left(X_{1}, \ldots, X_{n}\right)$ random vector with distribution $p\left(x_{1}, \ldots, x_{n}\right)$.
- Let $p\left(x_{1}\right), \ldots, p\left(x_{n}\right)$ denote the marginals of p (i.e., the distribution of each variable X_{i}).
- Let $\left(Y_{1}, \ldots, Y_{n}\right)$ have distribution $p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{n}\right)$ (so Y_{i} has the same distribution as X_{i}, but the Y_{i} s are independent).

Mutual information

- $\left(X_{1}, \ldots, X_{n}\right)$ random vector with distribution $p\left(x_{1}, \ldots, x_{n}\right)$.
- Let $p\left(x_{1}\right), \ldots, p\left(x_{n}\right)$ denote the marginals of p (i.e., the distribution of each variable X_{i}).
- Let $\left(Y_{1}, \ldots, Y_{n}\right)$ have distribution $p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{n}\right)$ (so Y_{i} has the same distribution as X_{i}, but the $Y_{i} s$ are independent).

The mutual information of $\left(X_{1}, \ldots, X_{n}\right)$ is given by

$$
I\left(X_{1}, \ldots, X_{n}\right)=D_{\mathrm{KL}}\left(p\left(x_{1}, \ldots, x_{n}\right) \| p\left(x_{1}\right) \ldots p\left(x_{n}\right)\right)
$$

- We have $I(X, Y)=0$ if and only if X, Y are independent.
- $\left(X_{1}, \ldots, X_{n}\right)$ random vector with distribution $p\left(x_{1}, \ldots, x_{n}\right)$.
- Let $p\left(x_{1}\right), \ldots, p\left(x_{n}\right)$ denote the marginals of p (i.e., the distribution of each variable X_{i}).
- Let $\left(Y_{1}, \ldots, Y_{n}\right)$ have distribution $p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{n}\right)$ (so Y_{i} has the same distribution as X_{i}, but the $Y_{i} s$ are independent).

The mutual information of $\left(X_{1}, \ldots, X_{n}\right)$ is given by

$$
I\left(X_{1}, \ldots, X_{n}\right)=D_{\mathrm{KL}}\left(p\left(x_{1}, \ldots, x_{n}\right) \| p\left(x_{1}\right) \ldots p\left(x_{n}\right)\right)
$$

- We have $I(X, Y)=0$ if and only if X, Y are independent.
- Therefore, $I\left(X_{1}, \ldots, X_{n}\right)$ provides a numerical measure of how independent random variables are.

Measures of non-Gaussianity

- The kurtosis (from greek kuptós, "curved") of a random variable with mean $\mu=E(X)$ is given by

$$
\operatorname{Kurt}(X):=\frac{E\left[(X-\mu)^{4}\right]}{\left(E\left[(X-\mu)^{2}\right]\right)^{2}} .
$$

Measures of non-Gaussianity

- The kurtosis (from greek kuptós, "curved") of a random variable with mean $\mu=E(X)$ is given by

$$
\operatorname{Kurt}(X):=\frac{E\left[(X-\mu)^{4}\right]}{\left(E\left[(X-\mu)^{2}\right]\right)^{2}} .
$$

- Measures the "propensity to produce outliers".

Measures of non-Gaussianity

- The kurtosis (from greek kuptós, "curved") of a random variable with mean $\mu=E(X)$ is given by

$$
\operatorname{Kurt}(X):=\frac{E\left[(X-\mu)^{4}\right]}{\left(E\left[(X-\mu)^{2}\right]\right)^{2}} .
$$

- Measures the "propensity to produce outliers".
- The Gaussian distribution has kurtosis equal to 3 .

Measures of non-Gaussianity

- The kurtosis (from greek kuptós, "curved") of a random variable with mean $\mu=E(X)$ is given by

$$
\operatorname{Kurt}(X):=\frac{E\left[(X-\mu)^{4}\right]}{\left(E\left[(X-\mu)^{2}\right]\right)^{2}} .
$$

- Measures the "propensity to produce outliers".
- The Gaussian distribution has kurtosis equal to 3 .
- Can thus use the "excess kurtosis" $\operatorname{Kurt}(X)-3$ to test for "non-Gaussianity".

Measures of non-Gaussianity

- The kurtosis (from greek kuptós, "curved") of a random variable with mean $\mu=E(X)$ is given by

$$
\operatorname{Kurt}(X):=\frac{E\left[(X-\mu)^{4}\right]}{\left(E\left[(X-\mu)^{2}\right]\right)^{2}} .
$$

- Measures the "propensity to produce outliers".
- The Gaussian distribution has kurtosis equal to 3 .
- Can thus use the "excess kurtosis" $\operatorname{Kurt}(X)-3$ to test for "non-Gaussianity".
- The negentropy of a random variable X is given by

$$
J(X):=H\left(X_{\text {gauss }}\right)-H(X),
$$

where $X_{\text {gauss }}$ is a Gaussian random variable with the same mean and variance as X.

- The kurtosis (from greek kuptós, "curved") of a random variable with mean $\mu=E(X)$ is given by

$$
\operatorname{Kurt}(X):=\frac{E\left[(X-\mu)^{4}\right]}{\left(E\left[(X-\mu)^{2}\right]\right)^{2}} .
$$

- Measures the "propensity to produce outliers".
- The Gaussian distribution has kurtosis equal to 3 .
- Can thus use the "excess kurtosis" $\operatorname{Kurt}(X)-3$ to test for "non-Gaussianity".
- The negentropy of a random variable X is given by

$$
J(X):=H\left(X_{\text {gauss }}\right)-H(X),
$$

where $X_{\text {gauss }}$ is a Gaussian random variable with the same mean and variance as X.

- Motivated by the fact that the Gaussian distribution has the largest entropy among all continuous distributions with a given mean and variance.
- The kurtosis (from greek kuptós, "curved") of a random variable with mean $\mu=E(X)$ is given by

$$
\operatorname{Kurt}(X):=\frac{E\left[(X-\mu)^{4}\right]}{\left(E\left[(X-\mu)^{2}\right]\right)^{2}} .
$$

- Measures the "propensity to produce outliers".
- The Gaussian distribution has kurtosis equal to 3 .
- Can thus use the "excess kurtosis" $\operatorname{Kurt}(X)-3$ to test for "non-Gaussianity".
- The negentropy of a random variable X is given by

$$
J(X):=H\left(X_{\text {gauss }}\right)-H(X),
$$

where $X_{\text {gauss }}$ is a Gaussian random variable with the same mean and variance as X.

- Motivated by the fact that the Gaussian distribution has the largest entropy among all continuous distributions with a given mean and variance.
- Therefore, a variable that is "far from a Gaussian" should have a larger negentropy.

The FastICA algorithm

- FastICA (Hyvärinen, 1999) is an efficient and popular algorithm for computing independent components.
- FastICA (Hyvärinen, 1999) is an efficient and popular algorithm for computing independent components.
- Finds linear combinations maximizing an approximation of the negentropy.
- FastICA (Hyvärinen, 1999) is an efficient and popular algorithm for computing independent components.
- Finds linear combinations maximizing an approximation of the negentropy.
- The negentropy is replaced by the approximation

$$
J(X) \approx\left[E(G(X))-E\left(G\left(X_{\text {gauss }}\right)\right)\right]^{2}
$$

where $G(x)=\log \cosh (x)$.

Whitening the data

Before the FastICA algorithm is applied, the data needs to be prewhitened.

Whitening the data

Before the FastICA algorithm is applied, the data needs to be prewhitened.

- Let $X \in \mathbb{R}^{N \times M}$ be the data matrix.

Whitening the data

Before the FastICA algorithm is applied, the data needs to be prewhitened.

- Let $X \in \mathbb{R}^{N \times M}$ be the data matrix.
- First center the rows of X :

$$
x_{i j} \leftarrow x_{i j}-\frac{1}{M} \sum_{k} x_{i k}
$$

Whitening the data

Before the FastICA algorithm is applied, the data needs to be prewhitened.

- Let $X \in \mathbb{R}^{N \times M}$ be the data matrix.
- First center the rows of X :

$$
x_{i j} \leftarrow x_{i j}-\frac{1}{M} \sum_{k} x_{i k} .
$$

- Next, we want the linearly transform the rows of X so that they become uncorrelated. We seek a linear transformation $L: \mathbb{R}^{N \times M} \rightarrow \mathbb{R}^{N \times M}$ such that

$$
\frac{1}{M} L(x) L(x)^{T}=I_{N \times N}
$$

Whitening the data

Before the FastICA algorithm is applied, the data needs to be prewhitened.

- Let $X \in \mathbb{R}^{N \times M}$ be the data matrix.
- First center the rows of X :

$$
x_{i j} \leftarrow x_{i j}-\frac{1}{M} \sum_{k} x_{i k} .
$$

- Next, we want the linearly transform the rows of X so that they become uncorrelated. We seek a linear transformation $L: \mathbb{R}^{N \times M} \rightarrow \mathbb{R}^{N \times M}$ such that

$$
\frac{1}{M} L(x) L(x)^{T}=I_{N \times N}
$$

This is easily achieved using the eigendecomposition of the covariance matrix of the centered data X :

$$
\frac{1}{M} X X^{T}=U D U^{T}
$$

Whitening the data

Before the FastICA algorithm is applied, the data needs to be prewhitened.

- Let $X \in \mathbb{R}^{N \times M}$ be the data matrix.
- First center the rows of X :

$$
x_{i j} \leftarrow x_{i j}-\frac{1}{M} \sum_{k} x_{i k} .
$$

- Next, we want the linearly transform the rows of X so that they become uncorrelated. We seek a linear transformation $L: \mathbb{R}^{N \times M} \rightarrow \mathbb{R}^{N \times M}$ such that

$$
\frac{1}{M} L(x) L(x)^{T}=I_{N \times N}
$$

This is easily achieved using the eigendecomposition of the covariance matrix of the centered data X :

$$
\frac{1}{M} X X^{T}=U D U^{T}
$$

- Define the whitened data matrix by

$$
X_{\text {white }}:=U D^{-1 / 2} U^{T} X
$$

The FastICA algorithm

We want to extract independent components of the form $w^{T} X$ where $w \in \mathbb{R}^{N}$.

We want to extract independent components of the form $w^{T} X$ where $w \in \mathbb{R}^{N}$.
The FastICA algorithm:

- Find a first direction w_{1} maximizing the (approximation of) the negentropy (can use a fixed point method).
- Estimate a second direction $w_{2} \perp w_{1}$ maximizing the (approximation of) the negentropy.
- etc..

Python - example

We mix two sound files, and recover them using ICA.

```
import scipy.io.wavfile
import numpy as np
rate, data1 = scipy.io.wavfile.read('daft-punk.wav')
rate2, data2 = scipy.io.wavfile.read('weather.wav')
mix1 = np.int16(0.3*data1+0.5*data2) [:,0]
mix2 = np.int16(0.2*data1+0.4*data2) [:,0]
scipy.io.wavfile.write('./out/mix1.wav',rate,mix1)
scipy.io.wavfile.write('./out/mix2.wav',rate,mix2)
from sklearn.decomposition import FastICA
ica = FastICA(n_components = 2)
X = np.vstack([mix1,mix2]).T
S_ = ica.fit_transform(X)
A_ = ica.mixing_
# Rescale components to have approximately the same mean amplitude as the first mixed signal
m = abs(mix1).mean()
m1 = abs(S_[:,0]).mean()
m2 = abs(S_[:,1]).mean()
S1 = np.int16(S_[:,0]*m/m1)
S2 = np.int16(S_[:,1]*m/m2)
scipy.io.wavfile.write('./out/estimated_source1.wav',rate,S1)
scipy.io.wavfile.write('./out/estimated_source2.wav',rate,S2)
```

