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Supervised and unsupervised learning

Supervised learning problems:
e Data (X,Y) is “labelled” (input/output) with joint density
P(X,Y).
@ We are mainly interested by the conditional density P(Y'|X).

o Example: regression problems, classification problems, etc..
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Supervised and unsupervised learning

Supervised learning problems:
e Data (X,Y) is “labelled” (input/output) with joint density
P(X,Y).
@ We are mainly interested by the conditional density P(Y'|X).
o Example: regression problems, classification problems, etc..
Unsupervised learning problems:
e Data X is not labelled and has density P(X).
e We want to infer properties of P(X) without the help of a
“supervisor” or “teacher”.
e Examples: Density estimation, PCA, ICA, sparse autoencoder,

clustering, etc..
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Clustering
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@ Unsupervised problem.
e Work only with
features/independent variables.

@ Want to label points according to
a measure of their similarity.
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What is a cluster?

We try to partition observations into “clusters” such that:
@ Intra-cluster distance is minimized.
o Inter-cluster distance is maximized.

Inter-cluster
distance

Intra-cluster
distance -

For graphs, we want vertices in the same cluster to be highly connected,

and vertices in different clusters to be mostly disconnected.
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The K-means algorithm

@ Goes back to Hugo Steinhaus (of the Banach—-Steinhaus

theorem) in 1957.

Source: Wikipedia.

Steinhaus authored over 170 works. Un-
like his student, Stefan Banach, who tended
to specialize narrowly in the field of func-
tional analysis, Steinhaus made contribu-
tions to a wide range of mathematical
sub-disciplines, including geometry, proba-
bility theory, functional analysis, theory of
trigonometric and Fourier series as well as
mathematical logic. He also wrote in the
area of applied mathematics and enthusi-
astically collaborated with engineers, geolo-
gists, economists, physicians, biologists and,
in Kac's words, "even lawyers".
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The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in RP.
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The K-means algorithm is a popular algorithm to cluster a set of
points in RP.

o We are given n observations z1, 22, ..., T, € RP.
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The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in RP.
o We are given n observations z1, 22, ..., T, € RP.

@ We are given a number of clusters K.
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The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in RP.

o We are given n observations z1, 22, ..., T, € RP.

@ We are given a number of clusters K.

o We want a partition § = {S1,..., Sk} of {x1,...,x,} such

that
K
S = argglinz > ey — il

1=1 $]'€S7,’

where 1; = \lel ijesi x; is the mean of the points in S; (the
“center” of S;).
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The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in RP.

o We are given n observations z1, 22, ..., T, € RP.

@ We are given a number of clusters K.

o We want a partition § = {S1,..., Sk} of {x1,...,x,} such

that
K
S = argglinz > ey — il

1=1 $]'€S7,’

where 1; = \lel Za:jesi x; is the mean of the points in S; (the
“center” of S;).

@ The above problem is NP hard.
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The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in RP.

o We are given n observations z1, 22, ..., T, € RP.
@ We are given a number of clusters K.
o We want a partition § = {S1,..., Sk} of {x1,...,x,} such

that
K
S = argglinz > ey — il

1=1 $]'€S7,’
where p; = ‘%' >_z,e8; Tj is the mean of the points in S; (the
“center” of S;).
@ The above problem is NP hard.

e Efficient approximation algorithms exist (converge to a local
minimum though).
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Some equivalent formulations

@ Note that
1K
52 0 D e —ml® = ZISI > My — pll?
=1 .’tJGSj,fL'kGSi TJES

which leads to an equivalent formulation of the above problem.
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Some equivalent formulations

@ Note that
1K
52 0 D e —ml® = ZISI > My — pll?
=1 .’tJGSi,fL'kGSi TJES

which leads to an equivalent formulation of the above problem.
e Forany S C {xl,... Tn},

s = S Z x; = argmm Z |z; —m]|?.
| |IZES z; €S

Thus, the K-means problem is equivalent to

argmin Z Z |z; — mill?

S,(ma)fS, = 1z;€S;

@ Other equivalent problem: solve
n
argmmz Inm |z; — mill?
(m)fs, ;==

and let S; == {z; : ||lz; — minngj—mkHQ Vk=1,...,K}.
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Lloyds's algorithm

Lloyds’s algorithm for K-means clustering
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Lloyds's algorithm

Lloyds’s algorithm for K-means clustering
@ Denote by C(i) the cluster assigned to z;.
@ Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a “cluster centers” assignment mgo), e ,mg). Set
t := 0. Repeat:
© Assign each point x; to the cluster whose mean is closest to
x;
j

S = {a; oy —mP )P <z —mPD |2 Ve =1,..., K}

1
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Lloyds's algorithm

Lloyds’s algorithm for K-means clustering
@ Denote by C(i) the cluster assigned to z;.
@ Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

(0) (0)

Start with a “cluster centers” assignment m; ’,...,m . Set
t := 0. Repeat:
© Assign each point x; to the cluster whose mean is closest to
x;
j

S = {a; oy —mP )P <z —mPD |2 Ve =1,..., K}

1

@ Compute the average mOH)

(t+1) Z
mz QZ]

‘ ) ’-Z’J S(t)

of the observations in cluster i:
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Lloyds's algorithm

Lloyds’s algorithm for K-means clustering
@ Denote by C(i) the cluster assigned to z;.
@ Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

(0) (0)

Start with a “cluster centers” assignment m; ’,...,m . Set
t := 0. Repeat:
© Assign each point x; to the cluster whose mean is closest to
x;
j

S = {a; oy —mP )P <z —mPD |2 Ve =1,..., K}

1

@ Compute the average mOH)

(t+1) Z
mz QZ]

‘ ) ’-Z’J S(t)

of the observations in cluster i:

Q@ t+—t+1.

Until convergence. o/13



Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially

minimize:
K
DD Ny —mal®.

=1 T €S;
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Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:
K
2
DD Ny —mal.
=1 ijSi

@ Both steps of the algorithm decrease the objective.
@ Thus, Lloyds's algorithm converges a local minimum of the
objective function.
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Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially

minimize:
K

DD Mg —mill?.

=1 T €S;

@ Both steps of the algorithm decrease the objective.
@ Thus, Lloyds's algorithm converges a local minimum of the
objective function.
There is no guarantee that Lloyds’ algorithm will find the global
optimum.
As a result, we use different starting points (i.e., different choices
for the initial means mgo)).
Common initialization methods:
© The Forgy method: Pick K observations at random from
{z1,...,2,} and use these as the initial means.
@ Random partition: Randomly assign a cluster to each

observation and compute the mean of each cluster.
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lllustration of the K-means algorithm

@ 100 random points in R?.
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lllustration of the K-means algorithm

@ 100 random points in R?.
@ The algorithm converges in 7 iterations (with a random
centers initialization).
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@ 100 random points in R?.

@ The algorithm converges in 7 iterations (with a random

centers initialization).

N=100,K=7

Iteration 1

Source: https://datasciencelab.wordpress.com

lllustration of the K-means algorithm
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lllustration of the K-means algorithm

@ 100 random points in R2.
@ The algorithm converges in 7 iterations (with a random
centers initialization).

N=100,K=7 lteration 2

Source: https://datasciencelab.wordpress.com
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lllustration of the K-means algorithm

@ 100 random points in R2.

@ The algorithm converges in 7 iterations (with a random

centers initialization).

N=100,K=7

Iteration 3

Source: https://datasciencelab.wordpress.com
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@ 100 random points in R2.

@ The algorithm converges in 7 iterations (with a random

centers initialization).

N=100,K=7

Iteration 4

Source: https://datasciencelab.wordpress.com

lllustration of the K-means algorithm
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@ 100 random points in R2.

@ The algorithm converges in 7 iterations (with a random

centers initialization).

N=100,K=7

Iteration 5

Source: https://datasciencelab.wordpress.com

lllustration of the K-means algorithm
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@ 100 random points in R2.

@ The algorithm converges in 7 iterations (with a random

centers initialization).

N=100,K=7

Iteration 6

Source: https://datasciencelab.wordpress.com

lllustration of the K-means algorithm
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@ 100 random points in R2.

@ The algorithm converges in 7 iterations (with a random

centers initialization).

N=100,K=7

Iteration 7

Source: https://datasciencelab.wordpress.com

lllustration of the K-means algorithm
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Consistency of K-means

D. Pollard (1981) proved a form of consistency for K-means
clustering.
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D. Pollard (1981) proved a form of consistency for K-means
clustering.
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o Let P, denote the empirical measure for a sample of size n.

@ For a given probability measure @ on RP, and any set A C RP,
let

B(4,Q) = / min |l — al]? dQ(x),
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let
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2(4,Q) = [ min o ol dQ(x).
and let
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Consistency of K-means

D. Pollard (1981) proved a form of consistency for K-means

clustering.
o Assume {z1,...,2,} C RP are iid from a distribution P on
RP,
o Let P, denote the empirical measure for a sample of size n.

For a given probability measure @ on RP, and any set A C R?,
let

— il — all2
2(4,Q) = [ min o ol dQ(x).
and let
mi(Q) := inf{®(A, Q) : A contains k or fewer points}.

For a given k, the set A,, = A, (k) of optimal cluster centers is
chosen to satisfy
D(A,, P,) = mi(Py,).
Let A = A(k) satisfy
®(4, P) = my(P).
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Consistency of K-means (cont.)

Theorem:(Pollard, 1981)
Suppose:
o [|lz||* dP(x) < o and

o for j =1,2,...,k there is a unique set A(3j) for which
(A(7), P) = m;(P).
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Consistency of K-means (cont.)

Theorem:(Pollard, 1981)
Suppose:
o [|lz||* dP(x) < o and
e for j =1,2,...,k there is a unique set A(j) for which
O(A(j), P) = m;(P).
Then A,, — A(k) a.s. (in the Hausdorff distance), and
®(A,, P,) — mi(P) as..
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Consistency of K-means (cont.)

Theorem:(Pollard, 1981)
Suppose:
o [|lz||* dP(x) < o and
e for j =1,2,...,k there is a unique set A(j) for which
O(A(j), P) = m;(P).
Then A,, — A(k) a.s. (in the Hausdorff distance), and
®(A,, P,) — mi(P) as..

@ Pollard’s theorem guarantees consistency under mild
assumptions.
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Consistency of K-means (cont.)

Theorem:(Pollard, 1981)
Suppose:
o [|lz||* dP(x) < o and
e for j =1,2,...,k there is a unique set A(j) for which
O(A(j), P) = m;(P).
Then A,, — A(k) a.s. (in the Hausdorff distance), and
®(A,, P,) — mi(P) as..

@ Pollard’s theorem guarantees consistency under mild
assumptions.

@ Note however, that the theorem assumes that the clustering
was obtain by globally minimizing the K-means objective
function (not true in applications).
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Example: clustering the zip data

Is there a nice cluster structure in the zip dataset?

# Load zip data

est = KMeans(n_clusters=10, verbose=1) # Note: verbose=1 is just to
# see what sklearn is doing...

est.fit(X_train)

Prop_mat = np.zeros((10,10)) # Percentage of label i that is digit j

for i in range(10):

N_i = np.sum(est.labels_ == i) # Number of samples with label i
for j in range(10):
Prop_mat[i,j] = np.sum(y_train[est.labels_ == i] == j)/

np.double(N_i)*100
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Example: clustering the zip data

Is there a nice cluster structure in the zip dataset?

# Load zip data

est = KMeans(n_clusters=10, verbose=1) # Note: verbose=1 is just to
# see what sklearn is doing...

est.fit(X_train)

Prop_mat = np.zeros((10,10)) # Percentage of label i that is digit j

for i in range(10):

N_i = np.sum(est.labels_ == i) # Number of samples with label i
for j in range(10):
Prop_mat[i,j] = np.sum(y_train[est.labels_ == i] == j)/
np.double(N_i)*100
Prop_mat =

0.00 0.00 2.45 0.38 0.94 0.57 0.00 83.96 0.19 11.51
14.78 0.00 0.77 0.26 0.77 14.40 68.64 00 0.39 0.00
1.08 0.46 7.57 11.13 0.77 10.66 0.31 62 66.46 0.93
90.37 0.00 2.28 0.18 0.18 1.23 5.08 00 0.70 0.00
88.96 0.00 0.51 0.34 0.00 2.72 7.13 00 0.34 0.00
1.08 0.00 86.15 1.85 2.15 1.38 5.54 31 1.54 0.00
1.41 0.00 5.66 1.13 62.23 5.66 1.41 25 1.41 17.82
1.63 0.00 3.69 59.22 0.00 32.00 0.00 00 3.25 0.22
0.00 93.03 0.37 0.09 3.90 0.00 0.84 28 1.02 0.46
0.00 0.12 1.10 1.46 16.93 0.61 0.24 4.99 54.08
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