
MATH 829: Introduction to Data Mining and
Analysis

Clustering I

Dominique Guillot

Departments of Mathematical Sciences

University of Delaware

April 25, 2016

1/13

Supervised and unsupervised learning

Supervised learning problems:

Data (X,Y) is �labelled� (input/output) with joint density
P (X,Y).

We are mainly interested by the conditional density P (Y |X).

Example: regression problems, classi�cation problems, etc..

Unsupervised learning problems:

Data X is not labelled and has density P (X).

We want to infer properties of P (X) without the help of a
�supervisor� or �teacher�.

Examples: Density estimation, PCA, ICA, sparse autoencoder,
clustering, etc..

2/13

Supervised and unsupervised learning

Supervised learning problems:

Data (X,Y) is �labelled� (input/output) with joint density
P (X,Y).

We are mainly interested by the conditional density P (Y |X).

Example: regression problems, classi�cation problems, etc..

Unsupervised learning problems:

Data X is not labelled and has density P (X).

We want to infer properties of P (X) without the help of a
�supervisor� or �teacher�.

Examples: Density estimation, PCA, ICA, sparse autoencoder,
clustering, etc..

2/13

Clustering

→

Wikipedia - Chire.

Unsupervised problem.

Work only with
features/independent variables.

Want to label points according to
a measure of their similarity.

3/13

What is a cluster?

We try to partition observations into �clusters� such that:

Intra-cluster distance is minimized.
Inter-cluster distance is maximized.

For graphs, we want vertices in the same cluster to be highly connected,

and vertices in di�erent clusters to be mostly disconnected.
4/13

The K-means algorithm

Goes back to Hugo Steinhaus (of the Banach�Steinhaus
theorem) in 1957.

Steinhaus authored over 170 works. Un-

like his student, Stefan Banach, who tended

to specialize narrowly in the �eld of func-

tional analysis, Steinhaus made contribu-

tions to a wide range of mathematical

sub-disciplines, including geometry, proba-

bility theory, functional analysis, theory of

trigonometric and Fourier series as well as

mathematical logic. He also wrote in the

area of applied mathematics and enthusi-

astically collaborated with engineers, geolo-

gists, economists, physicians, biologists and,

in Kac's words, "even lawyers".
Source: Wikipedia.

5/13

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in Rp.

We are given n observations x1, x2, . . . , xn ∈ Rp.

We are given a number of clusters K.

We want a partition Ŝ = {S1, . . . , SK} of {x1, . . . , xn} such
that

Ŝ = argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2,

where µi = 1
|Si|

∑
xj∈Si

xj is the mean of the points in Si (the

�center� of Si).

The above problem is NP hard.

E�cient approximation algorithms exist (converge to a local
minimum though).

6/13

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in Rp.

We are given n observations x1, x2, . . . , xn ∈ Rp.

We are given a number of clusters K.

We want a partition Ŝ = {S1, . . . , SK} of {x1, . . . , xn} such
that

Ŝ = argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2,

where µi = 1
|Si|

∑
xj∈Si

xj is the mean of the points in Si (the

�center� of Si).

The above problem is NP hard.

E�cient approximation algorithms exist (converge to a local
minimum though).

6/13

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in Rp.

We are given n observations x1, x2, . . . , xn ∈ Rp.

We are given a number of clusters K.

We want a partition Ŝ = {S1, . . . , SK} of {x1, . . . , xn} such
that

Ŝ = argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2,

where µi = 1
|Si|

∑
xj∈Si

xj is the mean of the points in Si (the

�center� of Si).

The above problem is NP hard.

E�cient approximation algorithms exist (converge to a local
minimum though).

6/13

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in Rp.

We are given n observations x1, x2, . . . , xn ∈ Rp.

We are given a number of clusters K.

We want a partition Ŝ = {S1, . . . , SK} of {x1, . . . , xn} such
that

Ŝ = argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2,

where µi = 1
|Si|

∑
xj∈Si

xj is the mean of the points in Si (the

�center� of Si).

The above problem is NP hard.

E�cient approximation algorithms exist (converge to a local
minimum though).

6/13

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in Rp.

We are given n observations x1, x2, . . . , xn ∈ Rp.

We are given a number of clusters K.

We want a partition Ŝ = {S1, . . . , SK} of {x1, . . . , xn} such
that

Ŝ = argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2,

where µi = 1
|Si|

∑
xj∈Si

xj is the mean of the points in Si (the

�center� of Si).

The above problem is NP hard.

E�cient approximation algorithms exist (converge to a local
minimum though).

6/13

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in Rp.

We are given n observations x1, x2, . . . , xn ∈ Rp.

We are given a number of clusters K.

We want a partition Ŝ = {S1, . . . , SK} of {x1, . . . , xn} such
that

Ŝ = argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2,

where µi = 1
|Si|

∑
xj∈Si

xj is the mean of the points in Si (the

�center� of Si).

The above problem is NP hard.

E�cient approximation algorithms exist (converge to a local
minimum though).

6/13

Some equivalent formulations

Note that

1

2

K∑
i=1

∑
xj∈Si

∑
xk∈Si

‖xj − xk‖2 =

K∑
i=1

|Si|
∑

xj∈Si

‖xj − µi‖2

which leads to an equivalent formulation of the above problem.

For any S ⊂ {x1, . . . , xn},

µS :=
1

|S|
∑
xi∈S

xi = argmin
m

∑
xi∈S

‖xi −m‖2.

Thus, the K-means problem is equivalent to

argmin
S,(ml)Kl=1

K∑
i=1

∑
xj∈Si

‖xj −mi‖2

Other equivalent problem: solve

argmin
(ml)Kl=1

n∑
j=1

min
1≤i≤K

‖xj −mi‖2,

and let Si := {xj : ‖xj −mi‖2 ≤ ‖xj −mk‖2 ∀k = 1, . . . ,K}.

7/13

Some equivalent formulations

Note that

1

2

K∑
i=1

∑
xj∈Si

∑
xk∈Si

‖xj − xk‖2 =

K∑
i=1

|Si|
∑

xj∈Si

‖xj − µi‖2

which leads to an equivalent formulation of the above problem.

For any S ⊂ {x1, . . . , xn},

µS :=
1

|S|
∑
xi∈S

xi = argmin
m

∑
xi∈S

‖xi −m‖2.

Thus, the K-means problem is equivalent to

argmin
S,(ml)Kl=1

K∑
i=1

∑
xj∈Si

‖xj −mi‖2

Other equivalent problem: solve

argmin
(ml)Kl=1

n∑
j=1

min
1≤i≤K

‖xj −mi‖2,

and let Si := {xj : ‖xj −mi‖2 ≤ ‖xj −mk‖2 ∀k = 1, . . . ,K}.

7/13

Some equivalent formulations

Note that

1

2

K∑
i=1

∑
xj∈Si

∑
xk∈Si

‖xj − xk‖2 =

K∑
i=1

|Si|
∑

xj∈Si

‖xj − µi‖2

which leads to an equivalent formulation of the above problem.

For any S ⊂ {x1, . . . , xn},

µS :=
1

|S|
∑
xi∈S

xi = argmin
m

∑
xi∈S

‖xi −m‖2.

Thus, the K-means problem is equivalent to

argmin
S,(ml)Kl=1

K∑
i=1

∑
xj∈Si

‖xj −mi‖2

Other equivalent problem: solve

argmin
(ml)Kl=1

n∑
j=1

min
1≤i≤K

‖xj −mi‖2,

and let Si := {xj : ‖xj −mi‖2 ≤ ‖xj −mk‖2 ∀k = 1, . . . ,K}.

7/13

Some equivalent formulations

Note that

1

2

K∑
i=1

∑
xj∈Si

∑
xk∈Si

‖xj − xk‖2 =

K∑
i=1

|Si|
∑

xj∈Si

‖xj − µi‖2

which leads to an equivalent formulation of the above problem.

For any S ⊂ {x1, . . . , xn},

µS :=
1

|S|
∑
xi∈S

xi = argmin
m

∑
xi∈S

‖xi −m‖2.

Thus, the K-means problem is equivalent to

argmin
S,(ml)Kl=1

K∑
i=1

∑
xj∈Si

‖xj −mi‖2

Other equivalent problem: solve

argmin
(ml)Kl=1

n∑
j=1

min
1≤i≤K

‖xj −mi‖2,

and let Si := {xj : ‖xj −mi‖2 ≤ ‖xj −mk‖2 ∀k = 1, . . . ,K}.
7/13

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.
Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:
1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.

8/13

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.

Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:
1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.

8/13

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.
Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:
1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.

8/13

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.
Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:

1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.

8/13

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.
Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:
1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.

8/13

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.
Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:
1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.

8/13

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.
Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:
1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.
8/13

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.
Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global
optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

9/13

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.

Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global
optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

9/13

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.
Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global
optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

9/13

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.
Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global
optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

9/13

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.
Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global
optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

9/13

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.
Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global
optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

9/13

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.
Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global
optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

9/13

Illustration of the K-means algorithm

100 random points in R2.

The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com

10/13

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com

10/13

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
10/13

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
10/13

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
10/13

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
10/13

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
10/13

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
10/13

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
10/13

Consistency of K-means

D. Pollard (1981) proved a form of consistency for K-means
clustering.

Assume {x1, . . . , xn} ⊂ Rp are iid from a distribution P on
Rp.
Let Pn denote the empirical measure for a sample of size n.
For a given probability measure Q on Rp, and any set A ⊂ Rp,
let

Φ(A,Q) :=

∫
min
a∈A
‖x− a‖2 dQ(x),

and let

mk(Q) := inf{Φ(A,Q) : A contains k or fewer points}.

For a given k, the set An = An(k) of optimal cluster centers is
chosen to satisfy

Φ(An, Pn) = mk(Pn).

Let A = A(k) satisfy

Φ(A,P) = mk(P).

11/13

Consistency of K-means

D. Pollard (1981) proved a form of consistency for K-means
clustering.

Assume {x1, . . . , xn} ⊂ Rp are iid from a distribution P on
Rp.

Let Pn denote the empirical measure for a sample of size n.
For a given probability measure Q on Rp, and any set A ⊂ Rp,
let

Φ(A,Q) :=

∫
min
a∈A
‖x− a‖2 dQ(x),

and let

mk(Q) := inf{Φ(A,Q) : A contains k or fewer points}.

For a given k, the set An = An(k) of optimal cluster centers is
chosen to satisfy

Φ(An, Pn) = mk(Pn).

Let A = A(k) satisfy

Φ(A,P) = mk(P).

11/13

Consistency of K-means

D. Pollard (1981) proved a form of consistency for K-means
clustering.

Assume {x1, . . . , xn} ⊂ Rp are iid from a distribution P on
Rp.
Let Pn denote the empirical measure for a sample of size n.

For a given probability measure Q on Rp, and any set A ⊂ Rp,
let

Φ(A,Q) :=

∫
min
a∈A
‖x− a‖2 dQ(x),

and let

mk(Q) := inf{Φ(A,Q) : A contains k or fewer points}.

For a given k, the set An = An(k) of optimal cluster centers is
chosen to satisfy

Φ(An, Pn) = mk(Pn).

Let A = A(k) satisfy

Φ(A,P) = mk(P).

11/13

Consistency of K-means

D. Pollard (1981) proved a form of consistency for K-means
clustering.

Assume {x1, . . . , xn} ⊂ Rp are iid from a distribution P on
Rp.
Let Pn denote the empirical measure for a sample of size n.
For a given probability measure Q on Rp, and any set A ⊂ Rp,
let

Φ(A,Q) :=

∫
min
a∈A
‖x− a‖2 dQ(x),

and let

mk(Q) := inf{Φ(A,Q) : A contains k or fewer points}.

For a given k, the set An = An(k) of optimal cluster centers is
chosen to satisfy

Φ(An, Pn) = mk(Pn).

Let A = A(k) satisfy

Φ(A,P) = mk(P).

11/13

Consistency of K-means

D. Pollard (1981) proved a form of consistency for K-means
clustering.

Assume {x1, . . . , xn} ⊂ Rp are iid from a distribution P on
Rp.
Let Pn denote the empirical measure for a sample of size n.
For a given probability measure Q on Rp, and any set A ⊂ Rp,
let

Φ(A,Q) :=

∫
min
a∈A
‖x− a‖2 dQ(x),

and let

mk(Q) := inf{Φ(A,Q) : A contains k or fewer points}.

For a given k, the set An = An(k) of optimal cluster centers is
chosen to satisfy

Φ(An, Pn) = mk(Pn).

Let A = A(k) satisfy

Φ(A,P) = mk(P).

11/13

Consistency of K-means

D. Pollard (1981) proved a form of consistency for K-means
clustering.

Assume {x1, . . . , xn} ⊂ Rp are iid from a distribution P on
Rp.
Let Pn denote the empirical measure for a sample of size n.
For a given probability measure Q on Rp, and any set A ⊂ Rp,
let

Φ(A,Q) :=

∫
min
a∈A
‖x− a‖2 dQ(x),

and let

mk(Q) := inf{Φ(A,Q) : A contains k or fewer points}.

For a given k, the set An = An(k) of optimal cluster centers is
chosen to satisfy

Φ(An, Pn) = mk(Pn).

Let A = A(k) satisfy

Φ(A,P) = mk(P).

11/13

Consistency of K-means

D. Pollard (1981) proved a form of consistency for K-means
clustering.

Assume {x1, . . . , xn} ⊂ Rp are iid from a distribution P on
Rp.
Let Pn denote the empirical measure for a sample of size n.
For a given probability measure Q on Rp, and any set A ⊂ Rp,
let

Φ(A,Q) :=

∫
min
a∈A
‖x− a‖2 dQ(x),

and let

mk(Q) := inf{Φ(A,Q) : A contains k or fewer points}.

For a given k, the set An = An(k) of optimal cluster centers is
chosen to satisfy

Φ(An, Pn) = mk(Pn).

Let A = A(k) satisfy

Φ(A,P) = mk(P).
11/13

Consistency of K-means (cont.)

Theorem:(Pollard, 1981)

Suppose:∫
‖x‖2 dP (x) <∞ and

for j = 1, 2, . . . , k there is a unique set A(j) for which
Φ(A(j), P) = mj(P).

Then An → A(k) a.s. (in the Hausdor� distance), and
Φ(An, Pn)→ mk(P) a.s..

Pollard's theorem guarantees consistency under mild
assumptions.

Note however, that the theorem assumes that the clustering
was obtain by globally minimizing the K-means objective
function (not true in applications).

12/13

Consistency of K-means (cont.)

Theorem:(Pollard, 1981)

Suppose:∫
‖x‖2 dP (x) <∞ and

for j = 1, 2, . . . , k there is a unique set A(j) for which
Φ(A(j), P) = mj(P).

Then An → A(k) a.s. (in the Hausdor� distance), and
Φ(An, Pn)→ mk(P) a.s..

Pollard's theorem guarantees consistency under mild
assumptions.

Note however, that the theorem assumes that the clustering
was obtain by globally minimizing the K-means objective
function (not true in applications).

12/13

Consistency of K-means (cont.)

Theorem:(Pollard, 1981)

Suppose:∫
‖x‖2 dP (x) <∞ and

for j = 1, 2, . . . , k there is a unique set A(j) for which
Φ(A(j), P) = mj(P).

Then An → A(k) a.s. (in the Hausdor� distance), and
Φ(An, Pn)→ mk(P) a.s..

Pollard's theorem guarantees consistency under mild
assumptions.

Note however, that the theorem assumes that the clustering
was obtain by globally minimizing the K-means objective
function (not true in applications).

12/13

Consistency of K-means (cont.)

Theorem:(Pollard, 1981)

Suppose:∫
‖x‖2 dP (x) <∞ and

for j = 1, 2, . . . , k there is a unique set A(j) for which
Φ(A(j), P) = mj(P).

Then An → A(k) a.s. (in the Hausdor� distance), and
Φ(An, Pn)→ mk(P) a.s..

Pollard's theorem guarantees consistency under mild
assumptions.

Note however, that the theorem assumes that the clustering
was obtain by globally minimizing the K-means objective
function (not true in applications).

12/13

Example: clustering the zip data

Is there a nice cluster structure in the zip dataset?
Load zip data
est = KMeans(n_clusters=10, verbose=1) # Note: verbose=1 is just to

see what sklearn is doing...
est.fit(X_train)

Prop_mat = np.zeros((10,10)) # Percentage of label i that is digit j

for i in range(10):
N_i = np.sum(est.labels_ == i) # Number of samples with label i
for j in range(10):

Prop_mat[i,j] = np.sum(y_train[est.labels_ == i] == j)/
np.double(N_i)*100

Prop_mat =



0.00 0.00 2.45 0.38 0.94 0.57 0.00 83.96 0.19 11.51
14.78 0.00 0.77 0.26 0.77 14.40 68.64 0.00 0.39 0.00
1.08 0.46 7.57 11.13 0.77 10.66 0.31 0.62 66.46 0.93
90.37 0.00 2.28 0.18 0.18 1.23 5.08 0.00 0.70 0.00
88.96 0.00 0.51 0.34 0.00 2.72 7.13 0.00 0.34 0.00
1.08 0.00 86.15 1.85 2.15 1.38 5.54 0.31 1.54 0.00
1.41 0.00 5.66 1.13 62.23 5.66 1.41 3.25 1.41 17.82
1.63 0.00 3.69 59.22 0.00 32.00 0.00 0.00 3.25 0.22
0.00 93.03 0.37 0.09 3.90 0.00 0.84 0.28 1.02 0.46
0.00 0.12 1.10 1.46 16.93 0.61 0.24 20.46 4.99 54.08



13/13

Example: clustering the zip data

Is there a nice cluster structure in the zip dataset?
Load zip data
est = KMeans(n_clusters=10, verbose=1) # Note: verbose=1 is just to

see what sklearn is doing...
est.fit(X_train)

Prop_mat = np.zeros((10,10)) # Percentage of label i that is digit j

for i in range(10):
N_i = np.sum(est.labels_ == i) # Number of samples with label i
for j in range(10):

Prop_mat[i,j] = np.sum(y_train[est.labels_ == i] == j)/
np.double(N_i)*100

Prop_mat =



0.00 0.00 2.45 0.38 0.94 0.57 0.00 83.96 0.19 11.51
14.78 0.00 0.77 0.26 0.77 14.40 68.64 0.00 0.39 0.00
1.08 0.46 7.57 11.13 0.77 10.66 0.31 0.62 66.46 0.93
90.37 0.00 2.28 0.18 0.18 1.23 5.08 0.00 0.70 0.00
88.96 0.00 0.51 0.34 0.00 2.72 7.13 0.00 0.34 0.00
1.08 0.00 86.15 1.85 2.15 1.38 5.54 0.31 1.54 0.00
1.41 0.00 5.66 1.13 62.23 5.66 1.41 3.25 1.41 17.82
1.63 0.00 3.69 59.22 0.00 32.00 0.00 0.00 3.25 0.22
0.00 93.03 0.37 0.09 3.90 0.00 0.84 0.28 1.02 0.46
0.00 0.12 1.10 1.46 16.93 0.61 0.24 20.46 4.99 54.08



13/13

