MATH 829: Introduction to Data Mining and Analysis Clustering II

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware
April 27, 2016

Spectral clustering: overview

In the previous lecture, we discussed how K-means can be used to cluster points in \mathbb{R}^{p}.
Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^{p}).
- Easy to implement. Only uses basic linear algebra.

In the previous lecture, we discussed how K-means can be used to cluster points in \mathbb{R}^{p}.
Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^{p}).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

In the previous lecture, we discussed how K-means can be used to cluster points in \mathbb{R}^{p}.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^{p}).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects.

In the previous lecture, we discussed how K-means can be used to cluster points in \mathbb{R}^{p}.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^{p}).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects.
(2) Use the similarity matrix to construct a (weighted or unweighted) graph.

In the previous lecture, we discussed how K-means can be used to cluster points in \mathbb{R}^{p}.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^{p}).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects.
(2) Use the similarity matrix to construct a (weighted or unweighted) graph.
(3) Compute eigenvectors of the graph Laplacian.

In the previous lecture, we discussed how K-means can be used to cluster points in \mathbb{R}^{p}.
Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^{p}).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects.
(2) Use the similarity matrix to construct a (weighted or unweighted) graph.
(3) Compute eigenvectors of the graph Laplacian.
(1) Cluster the graph using the eigenvectors of the graph Laplacian using the K-means algorithm.

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{i j} \geq 0$.

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{i j} \geq 0$.
- The adjacency matrix of G is $W=W_{G}=\left(w_{i j}\right)_{i, j=1}^{n}$. We will assume W is symmetric (undirected graphs).

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{i j} \geq 0$.
- The adjacency matrix of G is $W=W_{G}=\left(w_{i j}\right)_{i, j=1}^{n}$. We will assume W is symmetric (undirected graphs).
- The degree of v_{i} is

$$
d_{i}:=\sum_{j=1}^{n} w_{i j}
$$

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{i j} \geq 0$.
- The adjacency matrix of G is $W=W_{G}=\left(w_{i j}\right)_{i, j=1}^{n}$. We will assume W is symmetric (undirected graphs).
- The degree of v_{i} is

$$
d_{i}:=\sum_{j=1}^{n} w_{i j}
$$

- The degree matrix of G is $D:=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$.

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{i j} \geq 0$.
- The adjacency matrix of G is $W=W_{G}=\left(w_{i j}\right)_{i, j=1}^{n}$. We will assume W is symmetric (undirected graphs).
- The degree of v_{i} is

$$
d_{i}:=\sum_{j=1}^{n} w_{i j} .
$$

- The degree matrix of G is $D:=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$.
- We denote the complement of $A \subset V$ by \bar{A}.

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{i j} \geq 0$.
- The adjacency matrix of G is $W=W_{G}=\left(w_{i j}\right)_{i, j=1}^{n}$. We will assume W is symmetric (undirected graphs).
- The degree of v_{i} is

$$
d_{i}:=\sum_{j=1}^{n} w_{i j}
$$

- The degree matrix of G is $D:=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$.
- We denote the complement of $A \subset V$ by \bar{A}.
- If $A \subset V$, then we let $\mathbb{1}_{A}=\left(f_{1}, \ldots, f_{n}\right)^{T} \in \mathbb{R}^{n}$, where $f_{i}=1$ if $v_{i} \in A$ and 0 otherwise.

Similarity graphs

- We assume we are given a measure of similarity s between data points $x_{1}, \ldots, x_{n} \in \mathcal{X}$:

$$
s: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)
$$

Similarity graphs

- We assume we are given a measure of similarity s between data points $x_{1}, \ldots, x_{n} \in \mathcal{X}$:

$$
s: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)
$$

- We denote by $s_{i j}:=s\left(x_{i}, x_{j}\right)$ the measure of similarity between x_{i} and x_{j}.

Similarity graphs

- We assume we are given a measure of similarity s between data points $x_{1}, \ldots, x_{n} \in \mathcal{X}$:

$$
s: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)
$$

- We denote by $s_{i j}:=s\left(x_{i}, x_{j}\right)$ the measure of similarity between x_{i} and x_{j}.
- Equivalently, we may assume we have a measure of distance between data points (e.g. (\mathcal{X}, d) is a metric space).

Similarity graphs

- We assume we are given a measure of similarity s between data points $x_{1}, \ldots, x_{n} \in \mathcal{X}$:

$$
s: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)
$$

- We denote by $s_{i j}:=s\left(x_{i}, x_{j}\right)$ the measure of similarity between x_{i} and x_{j}.
- Equivalently, we may assume we have a measure of distance between data points (e.g. (\mathcal{X}, d) is a metric space).
- Let $d_{i j}:=d\left(x_{i}, x_{j}\right)$, the distance between x_{i} and x_{j}.

Similarity graphs

- We assume we are given a measure of similarity s between data points $x_{1}, \ldots, x_{n} \in \mathcal{X}$:

$$
s: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)
$$

- We denote by $s_{i j}:=s\left(x_{i}, x_{j}\right)$ the measure of similarity between x_{i} and x_{j}.
- Equivalently, we may assume we have a measure of distance between data points (e.g. (\mathcal{X}, d) is a metric space).
- Let $d_{i j}:=d\left(x_{i}, x_{j}\right)$, the distance between x_{i} and x_{j}.
- From $d_{i j}$ (or $s_{i j}$), we naturally build a similarity graph.

Similarity graphs

- We assume we are given a measure of similarity s between data points $x_{1}, \ldots, x_{n} \in \mathcal{X}$:

$$
s: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)
$$

- We denote by $s_{i j}:=s\left(x_{i}, x_{j}\right)$ the measure of similarity between x_{i} and x_{j}.
- Equivalently, we may assume we have a measure of distance between data points (e.g. (\mathcal{X}, d) is a metric space).
- Let $d_{i j}:=d\left(x_{i}, x_{j}\right)$, the distance between x_{i} and x_{j}.
- From $d_{i j}$ (or $s_{i j}$), we naturally build a similarity graph.
- We will discuss 3 popular ways of building a similarity graph.

Similarity graphs (cont.)

Vertex set $=\left\{v_{1}, \ldots, v_{n}\right\}$ where n is the number of data points.

Similarity graphs (cont.)

Vertex set $=\left\{v_{1}, \ldots, v_{n}\right\}$ where n is the number of data points.
(1) The ϵ-neighborhood graph: Connect all points whose pairwise distances are smaller than some $\epsilon>0$. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).

Similarity graphs (cont.)

Vertex set $=\left\{v_{1}, \ldots, v_{n}\right\}$ where n is the number of data points.
(1) The ϵ-neighborhood graph: Connect all points whose pairwise distances are smaller than some $\epsilon>0$. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).
(2) The k-nearest neighbor graph: The goal is to connect v_{i} to v_{j} if x_{j} is among the k nearest neighbords of x_{i}. However, this leads to a directed graph. We therefore define:

Similarity graphs (cont.)

Vertex set $=\left\{v_{1}, \ldots, v_{n}\right\}$ where n is the number of data points.
(1) The ϵ-neighborhood graph: Connect all points whose pairwise distances are smaller than some $\epsilon>0$. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).
(2) The k-nearest neighbor graph: The goal is to connect v_{i} to v_{j} if x_{j} is among the k nearest neighbords of x_{i}. However, this leads to a directed graph. We therefore define:

- the k-nearest neighbor graph: v_{i} is adjacent to v_{j} iff x_{j} is among the k nearest neighbords of $x_{i} \mathbf{O R} x_{i}$ is among the k nearest neighbords of x_{j}.

Similarity graphs (cont.)

Vertex set $=\left\{v_{1}, \ldots, v_{n}\right\}$ where n is the number of data points.
(1) The ϵ-neighborhood graph: Connect all points whose pairwise distances are smaller than some $\epsilon>0$. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).
(3) The k-nearest neighbor graph: The goal is to connect v_{i} to v_{j} if x_{j} is among the k nearest neighbords of x_{i}. However, this leads to a directed graph. We therefore define:

- the k-nearest neighbor graph: v_{i} is adjacent to v_{j} iff x_{j} is among the k nearest neighbords of $x_{i} \mathbf{O R} x_{i}$ is among the k nearest neighbords of x_{j}.
- the mutual k-nearest neighbor graph: v_{i} is adjacent to v_{j} iff x_{j} is among the k nearest neighbords of x_{i} AND x_{i} is among the k nearest neighbors of x_{j}.

Similarity graphs (cont.)

Vertex set $=\left\{v_{1}, \ldots, v_{n}\right\}$ where n is the number of data points.
(1) The ϵ-neighborhood graph: Connect all points whose pairwise distances are smaller than some $\epsilon>0$. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).
(3) The k-nearest neighbor graph: The goal is to connect v_{i} to v_{j} if x_{j} is among the k nearest neighbords of x_{i}. However, this leads to a directed graph. We therefore define:

- the k-nearest neighbor graph: v_{i} is adjacent to v_{j} iff x_{j} is among the k nearest neighbords of $x_{i} \mathbf{O R} x_{i}$ is among the k nearest neighbords of x_{j}.
- the mutual k-nearest neighbor graph: v_{i} is adjacent to v_{j} iff x_{j} is among the k nearest neighbords of x_{i} AND x_{i} is among the k nearest neighbors of x_{j}.
We weight the edges by the similarity of their endpoints.

Similarity graphs (cont.)

(3) The fully connected graph: Connect all points with edge weights $s_{i j}$.

Similarity graphs (cont.)

(3) The fully connected graph: Connect all points with edge weights $s_{i j}$. For example, one could use the Gaussian similarity function to represent a local neighborhood relationships:

$$
s_{i j}=s\left(x_{i}, x_{j}\right)=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} /\left(2 \sigma^{2}\right)\right) \quad\left(\sigma^{2}>0\right)
$$

Note: σ^{2} controls the width of the neighborhoods.

Similarity graphs (cont.)

(3) The fully connected graph: Connect all points with edge weights $s_{i j}$. For example, one could use the Gaussian similarity function to represent a local neighborhood relationships:

$$
s_{i j}=s\left(x_{i}, x_{j}\right)=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} /\left(2 \sigma^{2}\right)\right) \quad\left(\sigma^{2}>0\right)
$$

Note: σ^{2} controls the width of the neighborhoods.
All graphs mentioned above are regularly used in spectral clustering.

Graph Laplacians

There are three commonly used definitions of the graph Laplacian:
(1) The unnormalized Laplacian is

$$
L:=D-W
$$

Graph Laplacians

There are three commonly used definitions of the graph Laplacian:
(1) The unnormalized Laplacian is

$$
L:=D-W
$$

(2) The normalized symmetric Laplacian is

$$
L_{\mathrm{sym}}:=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} W D^{-1 / 2}
$$

Graph Laplacians

There are three commonly used definitions of the graph Laplacian:
(1) The unnormalized Laplacian is

$$
L:=D-W .
$$

(2) The normalized symmetric Laplacian is

$$
L_{\mathrm{sym}}:=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} W D^{-1 / 2}
$$

(3) The normalized "random walk" Laplacian is

$$
L_{\mathrm{rw}}:=D^{-1} L=I-D^{-1} W .
$$

Graph Laplacians

There are three commonly used definitions of the graph Laplacian:
(1) The unnormalized Laplacian is

$$
L:=D-W .
$$

(2) The normalized symmetric Laplacian is

$$
L_{\mathrm{sym}}:=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} W D^{-1 / 2}
$$

(3) The normalized "random walk" Laplacian is

$$
L_{\mathrm{rw}}:=D^{-1} L=I-D^{-1} W .
$$

We begin by studying properties of the unnormalized Laplacian.

The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:

The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

(2) L is symmetric and positive semidefinite.

The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

(2) L is symmetric and positive semidefinite.
(3) 0 is an eigenvalue of L with associated constant eigenvector $\mathbb{1}$.

The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

(2) L is symmetric and positive semidefinite.
(3) 0 is an eigenvalue of L with associated constant eigenvector $\mathbb{1}$.

Proof:

Proposition: The matrix L satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} .
$$

(2) L is symmetric and positive semidefinite.
(3) 0 is an eigenvalue of L with associated constant eigenvector $\mathbb{1}$. Proof: To prove (1),

$$
\begin{aligned}
f^{T} L f=f^{T} D f-f^{T} W f & =\sum_{i=1}^{n} d_{i} f_{i}^{2}-\sum_{i, j=1}^{n} w_{i j} f_{i} f_{j} \\
& =\frac{1}{2}\left(\sum_{i=1}^{n} d_{i} f_{i}^{2}-2 \sum_{i, j=1}^{n} w_{i j} f_{i} f_{j}+\sum_{j=1}^{n} d_{j} f_{j}^{2}\right) \\
& =\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} .
\end{aligned}
$$

(2) follows from (1). (3) is easy.

The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative weights. Then:

The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative weights. Then:
(1) The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_{1}, \ldots, A_{k} in the graph.

The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative weights. Then:
(1) The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_{1}, \ldots, A_{k} in the graph.
(2) The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}$ of those components.

The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative weights. Then:
(1) The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_{1}, \ldots, A_{k} in the graph.
(2) The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}$ of those components.
Proof:

Proposition: Let G be an undirected graph with non-negative weights. Then:
(1) The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_{1}, \ldots, A_{k} in the graph.
(2) The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}$ of those components.
Proof: If f is an eigenvector associate to $\lambda=0$, then

$$
0=f^{T} L f=\sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

It follows that $f_{i}=f_{j}$ whenever $w_{i j}>0$. Thus f is constant on the connected components of G. We conclude that the eigenspace of 0 is contained in $\operatorname{span}\left(\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}\right)$. Conversely, it is not hard to see that each $\mathbb{1}_{A_{i}}$ is an eigenvector associated to 0 (write L in block diagonal form).

Proposition: The normalized Laplacians satisfy the following properties:
(1) For every $f \in \mathbb{R}^{n}$, we have

$$
f^{T} L_{\mathrm{sym}} f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(\frac{f_{i}}{\sqrt{d_{i}}}-\frac{f_{j}}{\sqrt{d_{j}}}\right)^{2}
$$

(2) λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ is an eigenvalue of $L_{\text {sym }}$ with eigenvector $w=D^{1 / 2} u$.
(3) λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ and u solve the generalized eigenproblem $L u=\lambda D u$.

Proof: The proof of (1) is similar to the proof of the analogous result for the unnormalized Laplacian. (2) and (3) follow easily by using appropriate rescalings.

Proposition: Let G be an undirected graph with non-negative weights. Then:
(1) The multiplicity k of the eigenvalue 0 of both L_{sym} and L_{rw} equals the number of connected components A_{1}, \ldots, A_{k} in the graph.
(2) For L_{rw}, the eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{i}}, i=1, \ldots, k$.
(3) For $L_{\text {sym }}$, the eigenspace of eigenvalue 0 is spanned by the vectors $D^{1 / 2} \mathbb{1}_{A_{i}}, i=1, \ldots, k$.
Proof: Similar to the proof of the analogous result for the unnormalized Laplacian.

