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Spectral clustering: overview

In the previous lecture, we discussed how K-means can be used to
cluster points in RP.

Spectral clustering:
@ Very popular clustering method.
@ Often outperforms other methods such as K-means.
e Can be used for various “types” of data (not only points in RP).

o Easy to implement. Only uses basic linear algebra.
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Spectral clustering: overview

In the previous lecture, we discussed how K-means can be used to
cluster points in RP.

Spectral clustering:
@ Very popular clustering method.
@ Often outperforms other methods such as K-means.
e Can be used for various “types” of data (not only points in RP).
o Easy to implement. Only uses basic linear algebra.
Overview of spectral clustering:
© Construct a similarity matrix measuring the similarity of pairs
of objects.
@ Use the similarity matrix to construct a (weighted or
unweighted) graph.
© Compute eigenvectors of the graph Laplacian.
© Cluster the graph using the eigenvectors of the graph
Laplacian using the K-means algorithm.
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We will use the following notation/conventions:

e G = (V,E) a graph with vertex set V = {vy,...,v,} and
edgeset ECV x V.
Each edge carries a weight w;; > 0.
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n
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The degree matrix of G is D := diag(dy, ..., dy).
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We will use the following notation/conventions:

e G = (V,E) a graph with vertex set V = {vy,...,v,} and
edgeset ECV x V.

o Each edge carries a weight w;; > 0.

® The adjacency matrix of G is W = W = (wi5)7 ;1. We will
assume W is symmetric (undirected graphs).
o The degree of v; is

n
di = E wij.
Jj=1

e The degree matrix of G is D := diag(dy,...,d,).
e We denote the complement of A C V by A.

o If ACV, thenwelet 14 = (f1,...,f.)" € R", where f; =1
if v; € A and 0 otherwise.
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Similarity graphs

@ We assume we are given a measure of similarity s between data
points z1,...,T, € X:

s: X XX = [0,00).
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Similarity graphs

@ We assume we are given a measure of similarity s between data
points z1,...,T, € X:

s: X XX = [0,00).
o We denote by s;; := s(zj, ;) the measure of similarity between
x; and x;.

@ Equivalently, we may assume we have a measure of distance
between data points (e.g. (X, d) is a metric space).

o Let d;; := d(x;,x;), the distance between z; and z;.
e From d;; (or s;;), we naturally build a similarity graph.

@ We will discuss 3 popular ways of building a similarity graph.
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Similarity graphs (cont.)

Vertex set = {vy,...,v,} where n is the number of data points.
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Similarity graphs (cont.)

Vertex set = {vy,...,v,} where n is the number of data points.

© The e-neighborhood graph: Connect all points whose
pairwise distances are smaller than some € > 0. We usually
don’t weight the edges. The graph is thus a simple graph
(unweighted, undirected graph containing no loops or multiple
edges).

@ The k-nearest neighbor graph: The goal is to connect v; to
vj if x; is among the k nearest neighbords of ;. However,
this leads to a directed graph. We therefore define:

o the k-nearest neighbor graph: v; is adjacent to v; iff x; is
among the k nearest neighbords of z; OR z; is among the k
nearest neighbords of z;.

o the mutual k-nearest neighbor graph: v; is adjacent to v; iff
x; is among the k nearest neighbords of x; AND z; is among
the k nearest neighbors of z;.

We weight the edges by the similarity of their endpoints.
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Similarity graphs (cont.)

© The fully connected graph: Connect all points with edge
weights s;;.
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Similarity graphs (cont.)

© The fully connected graph: Connect all points with edge
weights s;;. For example, one could use the Gaussian similarity
function to represent a local neighborhood relationships:

sij = s(xj, xj) = exp(—|lx; — xj\|2/(202)) (02 > 0).

Note: o2 controls the width of the neighborhoods.

6/11



Similarity graphs (cont.)

© The fully connected graph: Connect all points with edge
weights s;;. For example, one could use the Gaussian similarity
function to represent a local neighborhood relationships:

sij = s(wi,xj) = exp(—|lw; — z5]*/(20%)) (o >0).
Note: o2 controls the width of the neighborhoods.

All graphs mentioned above are regularly used in spectral clustering.
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Graph Laplacians

There are three commonly used definitions of the graph Laplacian:

©® The unnormalized Laplacian is

L:=D-W.
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Graph Laplacians

There are three commonly used definitions of the graph Laplacian:

©® The unnormalized Laplacian is

L:=D-W.

@ The normalized symmetric Laplacian is

Leym := D7Y2LD7Y2 = [ — D72wD~1/2,

© The normalized “random walk” Laplacian is
Ly =D 'L=1-D"'W.
We begin by studying properties of the unnormalized Laplacian.
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The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:
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The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:

@ For any f € R™:
1 n
fTLf = 3 > wii(fi — £)*.
ij=1

@ L is symmetric and positive semidefinite.
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The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:
@ Forany f € R™
T 1 ¢ 2
fLf=5 > wii(fi — £)*.
ij=1
@ L is symmetric and positive semidefinite.
© 0 is an eigenvalue of L with associated constant eigenvector 1.
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The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:
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T 1 ¢ 2
fLf=5 > wii(fi — £)*.
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The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties

@ Forany f € R™

n

FLf =5 3 wilhi- )

1,7=1

@ L is symmetric and positive semidefinite.
© 0 is an eigenvalue of L with associated constant eigenvector 1

Proof: To prove (1),
fILf=fT"Df — fTWF = dif? = > wijfif;

i=1 i,j=1
(Zd fE-2 Z wij fif; + Zdjff)
1,0=1 Jj=1
P

(2) follows from (1). (3) is easy.

ba\ —

L] g/11



The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative
weights. Then:
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The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative
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@ The eigenspace of eigenvalue 0 is spanned by the indicator
vectors 14,,..., 14, of those components.

Proof:

9/11



The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative
weights. Then:

© The multiplicity &k of the eigenvalue 0 of L equals the number
of connected components Ay,..., A in the graph.

@ The eigenspace of eigenvalue 0 is spanned by the indicator
vectors 14,,..., 14, of those components.

Proof: If f is an eigenvector associate to A = 0, then
n
0=fTLf=> wiy(fi— 1)
ij=1

It follows that f; = f; whenever w;; > 0. Thus f is constant on
the connected components of G. We conclude that the eigenspace

of 0 is contained in span(Ll4,,...,14,). Conversely, it is not hard
to see that each 14, is an eigenvector associated to 0 (write L in
block diagonal form). O
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The normalized Laplacians

Proposition: The normalized Laplacians satisfy the following
properties:

© For every f € R™, we have

n 2
1 i ;
fTLsymf = ) Z Wij (\;d— - \L/fZT) .
g J

3,j=1

@ )\ is an eigenvalue of L, with eigenvector w if and only if \ is
an eigenvalue of Lgym, with eigenvector w = D'/2y,

© )\ is an eigenvalue of L, with eigenvector u if and only if A
and u solve the generalized eigenproblem Lu = ADu.

Proof: The proof of (1) is similar to the proof of the analogous
result for the unnormalized Laplacian. (2) and (3) follow easily by
using appropriate rescalings.
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The normalized Laplacians (cont.)

Proposition: Let G be an undirected graph with non-negative
weights. Then:

@ The multiplicity k£ of the eigenvalue 0 of both Lgyy, and Ly,
equals the number of connected components A1,..., Ay in
the graph.

@ For L.y, the eigenspace of eigenvalue 0 is spanned by the
indicator vectors 14,, ¢ =1,...,k.

© For Lgym, the eigenspace of eigenvalue 0 is spanned by the
vectors Dl/z]lAZ., i=1,...,k.

Proof: Similar to the proof of the analogous result for the
unnormalized Laplacian.
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