MATH 829: Introduction to Data Mining and Analysis Clustering II

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

April 27, 2016

This lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^p).
- Easy to implement. Only uses basic linear algebra.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^p).
- Easy to implement. Only uses basic linear algebra.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^p).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

 Construct a *similarity matrix* measuring the similarity of pairs of objects.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^p).
- Easy to implement. Only uses basic linear algebra.

- Construct a *similarity matrix* measuring the similarity of pairs of objects.
- Use the similarity matrix to construct a (weighted or unweighted) graph.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^p).
- Easy to implement. Only uses basic linear algebra.

- Construct a *similarity matrix* measuring the similarity of pairs of objects.
- Use the similarity matrix to construct a (weighted or unweighted) graph.
- Sompute eigenvectors of the graph Laplacian.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^p).
- Easy to implement. Only uses basic linear algebra.

- Construct a *similarity matrix* measuring the similarity of pairs of objects.
- Use the similarity matrix to construct a (weighted or unweighted) graph.
- Sompute eigenvectors of the graph Laplacian.
- Cluster the graph using the eigenvectors of the graph Laplacian using the K-means algorithm.

We will use the following notation/conventions:

• G = (V, E) a graph with vertex set $V = \{v_1, \dots, v_n\}$ and edge set $E \subset V \times V$.

- G = (V, E) a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{ij} \ge 0$.

- G = (V, E) a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{ij} \ge 0$.
- The adjacency matrix of G is $W = W_G = (w_{ij})_{i,j=1}^n$. We will assume W is symmetric (undirected graphs).

- G = (V, E) a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{ij} \ge 0$.
- The adjacency matrix of G is $W = W_G = (w_{ij})_{i,j=1}^n$. We will assume W is symmetric (undirected graphs).
- The *degree* of v_i is

$$d_i := \sum_{j=1}^n w_{ij}.$$

We will use the following notation/conventions:

- G = (V, E) a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{ij} \ge 0$.
- The adjacency matrix of G is $W = W_G = (w_{ij})_{i,j=1}^n$. We will assume W is symmetric (undirected graphs).
- The *degree* of v_i is

$$d_i := \sum_{j=1}^n w_{ij}.$$

• The degree matrix of G is $D := \operatorname{diag}(d_1, \ldots, d_n)$.

- G = (V, E) a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{ij} \ge 0$.
- The adjacency matrix of G is $W = W_G = (w_{ij})_{i,j=1}^n$. We will assume W is symmetric (undirected graphs).
- The *degree* of v_i is

$$d_i := \sum_{j=1}^n w_{ij}$$

- The degree matrix of G is $D := \operatorname{diag}(d_1, \ldots, d_n)$.
- We denote the complement of $A \subset V$ by \overline{A} .

- G = (V, E) a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{ij} \ge 0$.
- The adjacency matrix of G is $W = W_G = (w_{ij})_{i,j=1}^n$. We will assume W is symmetric (undirected graphs).
- The *degree* of v_i is

$$d_i := \sum_{j=1}^n w_{ij}$$

- The degree matrix of G is $D := \operatorname{diag}(d_1, \ldots, d_n)$.
- We denote the complement of $A \subset V$ by \overline{A} .
- If $A \subset V$, then we let $\mathbb{1}_A = (f_1, \ldots, f_n)^T \in \mathbb{R}^n$, where $f_i = 1$ if $v_i \in A$ and 0 otherwise.

 $s: \mathcal{X} \times \mathcal{X} \to [0, \infty).$

$$s: \mathcal{X} \times \mathcal{X} \to [0, \infty).$$

• We denote by $s_{ij} := s(x_i, x_j)$ the *measure of similarity* between x_i and x_j .

$$s: \mathcal{X} \times \mathcal{X} \to [0, \infty).$$

• We denote by $s_{ij} := s(x_i, x_j)$ the measure of similarity between x_i and x_j .

• Equivalently, we may assume we have a measure of *distance* between data points (e.g. (\mathcal{X}, d) is a metric space).

$$s: \mathcal{X} \times \mathcal{X} \to [0, \infty).$$

• We denote by $s_{ij} := s(x_i, x_j)$ the measure of similarity between x_i and x_j .

• Equivalently, we may assume we have a measure of *distance* between data points (e.g. (\mathcal{X}, d) is a metric space).

• Let $d_{ij} := d(x_i, x_j)$, the distance between x_i and x_j .

$$s: \mathcal{X} \times \mathcal{X} \to [0, \infty).$$

• We denote by $s_{ij} := s(x_i, x_j)$ the measure of similarity between x_i and x_j .

• Equivalently, we may assume we have a measure of *distance* between data points (e.g. (\mathcal{X}, d) is a metric space).

- Let $d_{ij} := d(x_i, x_j)$, the distance between x_i and x_j .
- From d_{ij} (or s_{ij}), we naturally build a *similarity graph*.

$$s: \mathcal{X} \times \mathcal{X} \to [0, \infty).$$

• We denote by $s_{ij} := s(x_i, x_j)$ the measure of similarity between x_i and x_j .

• Equivalently, we may assume we have a measure of *distance* between data points (e.g. (\mathcal{X}, d) is a metric space).

- Let $d_{ij} := d(x_i, x_j)$, the distance between x_i and x_j .
- From d_{ij} (or s_{ij}), we naturally build a similarity graph.
- We will discuss 3 popular ways of building a similarity graph.

Vertex set = $\{v_1, \ldots, v_n\}$ where n is the number of data points.

The
e-neighborhood graph: Connect all points whose pairwise distances are smaller than some
e > 0. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).

- The e-neighborhood graph: Connect all points whose pairwise distances are smaller than some e > 0. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).
- **2** The k-nearest neighbor graph: The goal is to connect v_i to v_j if x_j is among the k nearest neighbords of x_i . However, this leads to a directed graph. We therefore define:

- The e-neighborhood graph: Connect all points whose pairwise distances are smaller than some e > 0. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).
- **2** The k-nearest neighbor graph: The goal is to connect v_i to v_j if x_j is among the k nearest neighbords of x_i . However, this leads to a directed graph. We therefore define:
 - the k-nearest neighbor graph: v_i is adjacent to v_j iff x_j is among the k nearest neighbords of x_i **OR** x_i is among the k nearest neighbords of x_j .

- The e-neighborhood graph: Connect all points whose pairwise distances are smaller than some e > 0. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).
- **2** The k-nearest neighbor graph: The goal is to connect v_i to v_j if x_j is among the k nearest neighbords of x_i . However, this leads to a directed graph. We therefore define:
 - the k-nearest neighbor graph: v_i is adjacent to v_j iff x_j is among the k nearest neighbords of x_i **OR** x_i is among the k nearest neighbords of x_j .
 - the mutual k-nearest neighbor graph: v_i is adjacent to v_j iff x_j is among the k nearest neighbords of x_i AND x_i is among the k nearest neighbors of x_j.

Vertex set = $\{v_1, \ldots, v_n\}$ where n is the number of data points.

- The e-neighborhood graph: Connect all points whose pairwise distances are smaller than some e > 0. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).
- **2** The k-nearest neighbor graph: The goal is to connect v_i to v_j if x_j is among the k nearest neighbords of x_i . However, this leads to a directed graph. We therefore define:
 - the k-nearest neighbor graph: v_i is adjacent to v_j iff x_j is among the k nearest neighbords of x_i **OR** x_i is among the k nearest neighbords of x_j .
 - the mutual k-nearest neighbor graph: vi is adjacent to vj iff xj is among the k nearest neighbords of xi AND xi is among the k nearest neighbors of xj.

We weight the edges by the similarity of their endpoints.

The fully connected graph: Connect all points with edge weights s_{ij}.

The fully connected graph: Connect all points with edge weights s_{ij}. For example, one could use the Gaussian similarity function to represent a local neighborhood relationships:

$$s_{ij} = s(x_i, x_j) = \exp(-\|x_i - x_j\|^2 / (2\sigma^2))$$
 $(\sigma^2 > 0).$

Note: σ^2 controls the width of the neighborhoods.

The fully connected graph: Connect all points with edge weights s_{ij}. For example, one could use the Gaussian similarity function to represent a local neighborhood relationships:

$$s_{ij} = s(x_i, x_j) = \exp(-\|x_i - x_j\|^2 / (2\sigma^2))$$
 $(\sigma^2 > 0).$

Note: σ^2 controls the width of the neighborhoods.

All graphs mentioned above are regularly used in spectral clustering.

Graph Laplacians

There are three commonly used definitions of the graph Laplacian:

1 The unnormalized Laplacian is

L := D - W.

There are three commonly used definitions of the graph Laplacian:

1 The unnormalized Laplacian is

$$L := D - W.$$

2 The normalized symmetric Laplacian is

$$L_{\text{sym}} := D^{-1/2} L D^{-1/2} = I - D^{-1/2} W D^{-1/2}$$

There are three commonly used definitions of the graph Laplacian:

O The unnormalized Laplacian is

$$L := D - W.$$

2 The normalized symmetric Laplacian is

$$L_{\text{sym}} := D^{-1/2} L D^{-1/2} = I - D^{-1/2} W D^{-1/2}$$

O The normalized "random walk" Laplacian is

$$L_{\rm rw} := D^{-1}L = I - D^{-1}W.$$

There are three commonly used definitions of the graph Laplacian:

O The unnormalized Laplacian is

$$L := D - W.$$

2 The normalized symmetric Laplacian is

$$L_{\text{sym}} := D^{-1/2} L D^{-1/2} = I - D^{-1/2} W D^{-1/2}.$$

O The normalized "random walk" Laplacian is

$$L_{\rm rw} := D^{-1}L = I - D^{-1}W.$$

We begin by studying properties of the unnormalized Laplacian.

Proposition: The matrix L satisfies the following properties:

Proposition: The matrix L satisfies the following properties: **•** For any $f \in \mathbb{R}^n$:

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_{i} - f_{j})^{2}.$$

Proposition: The matrix L satisfies the following properties: • For any $f \in \mathbb{R}^n$:

$$f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2.$$

2 L is symmetric and positive semidefinite.

Proposition: The matrix L satisfies the following properties: • For any $f \in \mathbb{R}^n$:

$$f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2.$$

2 L is symmetric and positive semidefinite.

 \odot 0 is an eigenvalue of L with associated constant eigenvector 1.

Proposition: The matrix L satisfies the following properties: • For any $f \in \mathbb{R}^n$:

$$f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2.$$

2 L is symmetric and positive semidefinite.

3 0 is an eigenvalue of L with associated constant eigenvector $\mathbb{1}$. **Proof:**

Proposition: The matrix L satisfies the following properties: • For any $f \in \mathbb{R}^n$:

$$f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2.$$

2 L is symmetric and positive semidefinite.

3 0 is an eigenvalue of L with associated constant eigenvector 1. **Proof:** To prove (1),

$$f^{T}Lf = f^{T}Df - f^{T}Wf = \sum_{i=1}^{n} d_{i}f_{i}^{2} - \sum_{i,j=1}^{n} w_{ij}f_{i}f_{j}$$
$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_{i}f_{i}^{2} - 2\sum_{i,j=1}^{n} w_{ij}f_{i}f_{j} + \sum_{j=1}^{n} d_{j}f_{j}^{2} \right)$$
$$= \frac{1}{2} \sum_{i,j=1}^{n} w_{ij}(f_{i} - f_{j})^{2}.$$

(2) follows from (1). (3) is easy.

8/11

Proposition: Let G be an undirected graph with non-negative weights. Then:

Proposition: Let G be an undirected graph with non-negative weights. Then:

The multiplicity k of the eigenvalue 0 of L equals the number of connected components A₁,..., A_k in the graph.

Proposition: Let G be an undirected graph with non-negative weights. Then:

- The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph.
- The eigenspace of eigenvalue 0 is spanned by the indicator vectors 1_{A1},..., 1_{Ak} of those components.

Proposition: Let G be an undirected graph with non-negative weights. Then:

- The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph.
- The eigenspace of eigenvalue 0 is spanned by the indicator vectors 1_{A1},..., 1_{Ak} of those components.

Proof:

Proposition: Let G be an undirected graph with non-negative weights. Then:

- The multiplicity k of the eigenvalue 0 of L equals the number of connected components A₁,..., A_k in the graph.
- The eigenspace of eigenvalue 0 is spanned by the indicator vectors 1_{A1},..., 1_{Ak} of those components.

Proof: If f is an eigenvector associate to $\lambda = 0$, then

$$0 = f^T L f = \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2.$$

It follows that $f_i = f_j$ whenever $w_{ij} > 0$. Thus f is constant on the connected components of G. We conclude that the eigenspace of 0 is contained in $\operatorname{span}(\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k})$. Conversely, it is not hard to see that each $\mathbb{1}_{A_i}$ is an eigenvector associated to 0 (write L in block diagonal form). **Proposition:** The normalized Laplacians satisfy the following properties:

1 For every $f \in \mathbb{R}^n$, we have

$$f^T L_{\text{sym}} f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2.$$

- 2 λ is an eigenvalue of $L_{\rm rw}$ with eigenvector u if and only if λ is an eigenvalue of $L_{\rm sym}$ with eigenvector $w = D^{1/2}u$.
- λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ and u solve the generalized eigenproblem $Lu = \lambda Du$.

Proof: The proof of (1) is similar to the proof of the analogous result for the unnormalized Laplacian. (2) and (3) follow easily by using appropriate rescalings.

Proposition: Let G be an undirected graph with non-negative weights. Then:

- The multiplicity k of the eigenvalue 0 of both L_{sym} and L_{rw} equals the number of connected components A₁,..., A_k in the graph.
- 2 For $L_{\rm rw}$, the eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_i}$, $i = 1, \ldots, k$.
- For $L_{\rm sym}$, the eigenspace of eigenvalue 0 is spanned by the vectors $D^{1/2} \mathbbm{1}_{A_i}$, $i = 1, \ldots, k$.

Proof: Similar to the proof of the analogous result for the unnormalized Laplacian.