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Spectral clustering: overview

In the previous lecture, we discussed how K-means can be used to
cluster points in Rp.

Spectral clustering:

Very popular clustering method.

Often outperforms other methods such as K-means.

Can be used for various �types� of data (not only points in Rp).

Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

1 Construct a similarity matrix measuring the similarity of pairs
of objects.

2 Use the similarity matrix to construct a (weighted or
unweighted) graph.

3 Compute eigenvectors of the graph Laplacian.

4 Cluster the graph using the eigenvectors of the graph
Laplacian using the K-means algorithm.
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Notation

We will use the following notation/conventions:

G = (V,E) a graph with vertex set V = {v1, . . . , vn} and
edge set E ⊂ V × V .

Each edge carries a weight wij ≥ 0.

The adjacency matrix of G is W =WG = (wij)
n
i,j=1. We will

assume W is symmetric (undirected graphs).

The degree of vi is

di :=
n∑

j=1

wij .

The degree matrix of G is D := diag(d1, . . . , dn).

We denote the complement of A ⊂ V by A.

If A ⊂ V , then we let 1A = (f1, . . . , fn)
T ∈ Rn, where fi = 1

if vi ∈ A and 0 otherwise.
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Similarity graphs

We assume we are given a measure of similarity s between data
points x1, . . . , xn ∈ X :

s : X × X → [0,∞).

We denote by sij := s(xi, xj) the measure of similarity between
xi and xj .

Equivalently, we may assume we have a measure of distance
between data points (e.g. (X , d) is a metric space).

Let dij := d(xi, xj), the distance between xi and xj .

From dij (or sij), we naturally build a similarity graph.

We will discuss 3 popular ways of building a similarity graph.
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Similarity graphs (cont.)

Vertex set = {v1, . . . , vn} where n is the number of data points.

1 The ε-neighborhood graph: Connect all points whose
pairwise distances are smaller than some ε > 0. We usually
don't weight the edges. The graph is thus a simple graph
(unweighted, undirected graph containing no loops or multiple
edges).

2 The k-nearest neighbor graph: The goal is to connect vi to
vj if xj is among the k nearest neighbords of xi. However,
this leads to a directed graph. We therefore de�ne:

the k-nearest neighbor graph: vi is adjacent to vj i� xj is

among the k nearest neighbords of xi OR xi is among the k
nearest neighbords of xj .
the mutual k-nearest neighbor graph: vi is adjacent to vj i�

xj is among the k nearest neighbords of xi AND xi is among

the k nearest neighbors of xj .

We weight the edges by the similarity of their endpoints.
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Similarity graphs (cont.)

3 The fully connected graph: Connect all points with edge
weights sij .

For example, one could use the Gaussian similarity

function to represent a local neighborhood relationships:

sij = s(xi, xj) = exp(−‖xi − xj‖2/(2σ2)) (σ2 > 0).

Note: σ2 controls the width of the neighborhoods.

All graphs mentioned above are regularly used in spectral clustering.
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Graph Laplacians

There are three commonly used de�nitions of the graph Laplacian:

1 The unnormalized Laplacian is

L := D −W.

2 The normalized symmetric Laplacian is

Lsym := D−1/2LD−1/2 = I −D−1/2WD−1/2.

3 The normalized �random walk� Laplacian is

Lrw := D−1L = I −D−1W.

We begin by studying properties of the unnormalized Laplacian.
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The unnormalized Laplacian

Proposition: The matrix L satis�es the following properties:

1 For any f ∈ Rn:

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2.

2 L is symmetric and positive semide�nite.
3 0 is an eigenvalue of L with associated constant eigenvector 1.

Proof: To prove (1),

fTLf = fTDf − fTWf =
n∑

i=1

dif
2
i −

n∑
i,j=1

wijfifj

=
1

2

 n∑
i=1

dif
2
i − 2

n∑
i,j=1

wijfifj +

n∑
j=1

djf
2
j


=

1

2

n∑
i,j=1

wij(fi − fj)2.

(2) follows from (1). (3) is easy.
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The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative
weights. Then:

1 The multiplicity k of the eigenvalue 0 of L equals the number
of connected components A1, . . . , Ak in the graph.

2 The eigenspace of eigenvalue 0 is spanned by the indicator
vectors 1A1 , . . . ,1Ak

of those components.

Proof: If f is an eigenvector associate to λ = 0, then

0 = fTLf =

n∑
i,j=1

wij(fi − fj)2.

It follows that fi = fj whenever wij > 0. Thus f is constant on
the connected components of G. We conclude that the eigenspace
of 0 is contained in span(1A1 , . . . ,1Ak

). Conversely, it is not hard
to see that each 1Ai is an eigenvector associated to 0 (write L in
block diagonal form).
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to see that each 1Ai is an eigenvector associated to 0 (write L in
block diagonal form).
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The normalized Laplacians

Proposition: The normalized Laplacians satisfy the following
properties:

1 For every f ∈ Rn, we have

fTLsymf =
1

2

n∑
i,j=1

wij

(
fi√
di
− fj√

dj

)2

.

2 λ is an eigenvalue of Lrw with eigenvector u if and only if λ is
an eigenvalue of Lsym with eigenvector w = D1/2u.

3 λ is an eigenvalue of Lrw with eigenvector u if and only if λ
and u solve the generalized eigenproblem Lu = λDu.

Proof: The proof of (1) is similar to the proof of the analogous
result for the unnormalized Laplacian. (2) and (3) follow easily by
using appropriate rescalings.
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The normalized Laplacians (cont.)

Proposition: Let G be an undirected graph with non-negative
weights. Then:

1 The multiplicity k of the eigenvalue 0 of both Lsym and Lrw
equals the number of connected components A1, . . . , Ak in
the graph.

2 For Lrw, the eigenspace of eigenvalue 0 is spanned by the
indicator vectors 1Ai , i = 1, . . . , k.

3 For Lsym, the eigenspace of eigenvalue 0 is spanned by the
vectors D1/2

1Ai , i = 1, . . . , k.

Proof: Similar to the proof of the analogous result for the
unnormalized Laplacian.

11/11


