
MATH 829: Introduction to Data Mining and
Analysis

Clustering III

Dominique Guillot

Departments of Mathematical Sciences

University of Delaware

April 29, 2016

This lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007.

Graph cuts

G graph with (weighted)
adjacency matrix W = (wij).

We de�ne:

W (A,B) :=
∑

i∈A,j∈B
wij .

|A| := number of vertices in A.

vol(A) :=
∑

i∈A di.

Given a partition A1, . . . , Ak of the vertices of G, we let

cut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai).

The min-cut problem consists of solving:

min
V=A1∪···∪Ak
Ai∩Aj=∅ ∀i6=j

cut(A1, . . . , Ak).

2/15

Graph cuts

G graph with (weighted)
adjacency matrix W = (wij).

We de�ne:

W (A,B) :=
∑

i∈A,j∈B
wij .

|A| := number of vertices in A.

vol(A) :=
∑

i∈A di.

Given a partition A1, . . . , Ak of the vertices of G, we let

cut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai).

The min-cut problem consists of solving:

min
V=A1∪···∪Ak
Ai∩Aj=∅ ∀i 6=j

cut(A1, . . . , Ak).

2/15

Graph cuts

G graph with (weighted)
adjacency matrix W = (wij).

We de�ne:

W (A,B) :=
∑

i∈A,j∈B
wij .

|A| := number of vertices in A.

vol(A) :=
∑

i∈A di.

Given a partition A1, . . . , Ak of the vertices of G, we let

cut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai).

The min-cut problem consists of solving:

min
V=A1∪···∪Ak
Ai∩Aj=∅ ∀i 6=j

cut(A1, . . . , Ak).

2/15

Graph cuts (cont.)

The min-cut problem can be solved e�ciently when k = 2 (see
Stoer and Wagner 1997).

In practice it often does not lead to satisfactory partitions.

In many cases, the solution of min-cut simply separates one
individual vertex from the rest of the graph.

We would like clusters to have a reasonably large number of
points.

We therefore modify the min-cut problem to enforce such
constraints.

3/15

Graph cuts (cont.)

The min-cut problem can be solved e�ciently when k = 2 (see
Stoer and Wagner 1997).

In practice it often does not lead to satisfactory partitions.

In many cases, the solution of min-cut simply separates one
individual vertex from the rest of the graph.

We would like clusters to have a reasonably large number of
points.

We therefore modify the min-cut problem to enforce such
constraints.

3/15

Graph cuts (cont.)

The min-cut problem can be solved e�ciently when k = 2 (see
Stoer and Wagner 1997).

In practice it often does not lead to satisfactory partitions.

In many cases, the solution of min-cut simply separates one
individual vertex from the rest of the graph.

We would like clusters to have a reasonably large number of
points.

We therefore modify the min-cut problem to enforce such
constraints.

3/15

Graph cuts (cont.)

The min-cut problem can be solved e�ciently when k = 2 (see
Stoer and Wagner 1997).

In practice it often does not lead to satisfactory partitions.

In many cases, the solution of min-cut simply separates one
individual vertex from the rest of the graph.

We would like clusters to have a reasonably large number of
points.

We therefore modify the min-cut problem to enforce such
constraints.

3/15

Graph cuts (cont.)

The min-cut problem can be solved e�ciently when k = 2 (see
Stoer and Wagner 1997).

In practice it often does not lead to satisfactory partitions.

In many cases, the solution of min-cut simply separates one
individual vertex from the rest of the graph.

We would like clusters to have a reasonably large number of
points.

We therefore modify the min-cut problem to enforce such
constraints.

3/15

Balanced cuts

The two most common objective functions that are used as a
replacement to the min-cut objective are:

1 RatioCut (Hagen and Kahng, 1992):

RatioCut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

|Ai|
=

k∑
i=1

cut(Ai, Ai)

|Ai|
.

2 Normalized cut (Shi and Malik, 2000):

Ncut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

vol(Ai)
=

k∑
i=1

cut(Ai, Ai)

vol(Ai)
.

Note: both objective functions take larger values when the
clusters Ai are �small�.

Resulting clusters are more �balanced�.

However, the resulting problems are NP hard - see Wagner and
Wagner (1993).

4/15

Balanced cuts

The two most common objective functions that are used as a
replacement to the min-cut objective are:

1 RatioCut (Hagen and Kahng, 1992):

RatioCut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

|Ai|
=

k∑
i=1

cut(Ai, Ai)

|Ai|
.

2 Normalized cut (Shi and Malik, 2000):

Ncut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

vol(Ai)
=

k∑
i=1

cut(Ai, Ai)

vol(Ai)
.

Note: both objective functions take larger values when the
clusters Ai are �small�.

Resulting clusters are more �balanced�.

However, the resulting problems are NP hard - see Wagner and
Wagner (1993).

4/15

Balanced cuts

The two most common objective functions that are used as a
replacement to the min-cut objective are:

1 RatioCut (Hagen and Kahng, 1992):

RatioCut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

|Ai|
=

k∑
i=1

cut(Ai, Ai)

|Ai|
.

2 Normalized cut (Shi and Malik, 2000):

Ncut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

vol(Ai)
=

k∑
i=1

cut(Ai, Ai)

vol(Ai)
.

Note: both objective functions take larger values when the
clusters Ai are �small�.

Resulting clusters are more �balanced�.

However, the resulting problems are NP hard - see Wagner and
Wagner (1993).

4/15

Balanced cuts

The two most common objective functions that are used as a
replacement to the min-cut objective are:

1 RatioCut (Hagen and Kahng, 1992):

RatioCut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

|Ai|
=

k∑
i=1

cut(Ai, Ai)

|Ai|
.

2 Normalized cut (Shi and Malik, 2000):

Ncut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

vol(Ai)
=

k∑
i=1

cut(Ai, Ai)

vol(Ai)
.

Note: both objective functions take larger values when the
clusters Ai are �small�.

Resulting clusters are more �balanced�.

However, the resulting problems are NP hard - see Wagner and
Wagner (1993).

4/15

Balanced cuts

The two most common objective functions that are used as a
replacement to the min-cut objective are:

1 RatioCut (Hagen and Kahng, 1992):

RatioCut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

|Ai|
=

k∑
i=1

cut(Ai, Ai)

|Ai|
.

2 Normalized cut (Shi and Malik, 2000):

Ncut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

vol(Ai)
=

k∑
i=1

cut(Ai, Ai)

vol(Ai)
.

Note: both objective functions take larger values when the
clusters Ai are �small�.

Resulting clusters are more �balanced�.

However, the resulting problems are NP hard - see Wagner and
Wagner (1993).

4/15

Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the
Normalized cut problems.

Strategy:

1 Express the original problem as a linear algebra problem
involving discrete/combinatorial constraints.

2 Relax/remove the constraints.

RatioCut with k = 2: solve

min
A⊂V

RatioCut(A,A).

Given A ⊂ V , let f ∈ Rn be given by

fi :=

√
|A|/|A| if vi ∈ A

−
√
|A|/|A| if vi 6∈ A.

5/15

Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the
Normalized cut problems.

Strategy:

1 Express the original problem as a linear algebra problem
involving discrete/combinatorial constraints.

2 Relax/remove the constraints.

RatioCut with k = 2: solve

min
A⊂V

RatioCut(A,A).

Given A ⊂ V , let f ∈ Rn be given by

fi :=

√
|A|/|A| if vi ∈ A

−
√
|A|/|A| if vi 6∈ A.

5/15

Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the
Normalized cut problems.

Strategy:

1 Express the original problem as a linear algebra problem
involving discrete/combinatorial constraints.

2 Relax/remove the constraints.

RatioCut with k = 2: solve

min
A⊂V

RatioCut(A,A).

Given A ⊂ V , let f ∈ Rn be given by

fi :=

√
|A|/|A| if vi ∈ A

−
√
|A|/|A| if vi 6∈ A.

5/15

Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the
Normalized cut problems.

Strategy:

1 Express the original problem as a linear algebra problem
involving discrete/combinatorial constraints.

2 Relax/remove the constraints.

RatioCut with k = 2: solve

min
A⊂V

RatioCut(A,A).

Given A ⊂ V , let f ∈ Rn be given by

fi :=

√
|A|/|A| if vi ∈ A

−
√
|A|/|A| if vi 6∈ A.

5/15

Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the
Normalized cut problems.

Strategy:

1 Express the original problem as a linear algebra problem
involving discrete/combinatorial constraints.

2 Relax/remove the constraints.

RatioCut with k = 2: solve

min
A⊂V

RatioCut(A,A).

Given A ⊂ V , let f ∈ Rn be given by

fi :=

√
|A|/|A| if vi ∈ A

−
√
|A|/|A| if vi 6∈ A.

5/15

Relaxing RatioCut

Let L = D −W be the (unnormalized) Laplacian of G. Then

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2

=
1

2

∑
i∈A,j∈A

wij

√ |A|
|A|

+

√
|A|
|A|

2

+
1

2

∑
i∈A,j∈A

wij

−√ |A|
|A|
−

√
|A|
|A|

2

=W (A,A)

(
2 +
|A|
|A|

+
|A|
|A|

)
=W (A,A)

(
|A|+ |A|
|A|

+
|A|+ |A|
|A|

)
= |V | · 1

2

(
W (A,A)

|A|
+
W (A,A)

|A|

)
= |V | · RatioCut(A,A).

since |A|+ |A| = |V |, and W (A,A) =W (A,A).

6/15

Relaxing RatioCut (cont.)

We showed:

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2 = |V | · RatioCut(A,A).

Moreover, note that

n∑
i=1

fi =
∑
i∈A

√
|A|
|A|
−
∑
i∈A

√
|A|
|A|

= |A| ·

√
|A|
|A|
− |A| ·

√
|A|
|A|

= 0.

Thus f ⊥ 1.

Finally,

‖f‖22 =
n∑

i=1

f2i = |A| · |A|
|A|

+ |A| · |A|
|A|

= |V | = n.

Thus, we have showed that the Ratio-Cut problem is equivalent to

min
A⊂V

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n, fi de�ned as above.

7/15

Relaxing RatioCut (cont.)

We showed:

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2 = |V | · RatioCut(A,A).

Moreover, note that

n∑
i=1

fi =
∑
i∈A

√
|A|
|A|
−
∑
i∈A

√
|A|
|A|

= |A| ·

√
|A|
|A|
− |A| ·

√
|A|
|A|

= 0.

Thus f ⊥ 1.

Finally,

‖f‖22 =
n∑

i=1

f2i = |A| · |A|
|A|

+ |A| · |A|
|A|

= |V | = n.

Thus, we have showed that the Ratio-Cut problem is equivalent to

min
A⊂V

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n, fi de�ned as above.

7/15

Relaxing RatioCut (cont.)

We showed:

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2 = |V | · RatioCut(A,A).

Moreover, note that

n∑
i=1

fi =
∑
i∈A

√
|A|
|A|
−
∑
i∈A

√
|A|
|A|

= |A| ·

√
|A|
|A|
− |A| ·

√
|A|
|A|

= 0.

Thus f ⊥ 1.

Finally,

‖f‖22 =
n∑

i=1

f2i = |A| · |A|
|A|

+ |A| · |A|
|A|

= |V | = n.

Thus, we have showed that the Ratio-Cut problem is equivalent to

min
A⊂V

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n, fi de�ned as above.

7/15

Relaxing RatioCut (cont.)

We showed:

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2 = |V | · RatioCut(A,A).

Moreover, note that

n∑
i=1

fi =
∑
i∈A

√
|A|
|A|
−
∑
i∈A

√
|A|
|A|

= |A| ·

√
|A|
|A|
− |A| ·

√
|A|
|A|

= 0.

Thus f ⊥ 1.

Finally,

‖f‖22 =
n∑

i=1

f2i = |A| · |A|
|A|

+ |A| · |A|
|A|

= |V | = n.

Thus, we have showed that the Ratio-Cut problem is equivalent to

min
A⊂V

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n, fi de�ned as above.

7/15

Relaxing RatioCut (cont.)

We showed:

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2 = |V | · RatioCut(A,A).

Moreover, note that

n∑
i=1

fi =
∑
i∈A

√
|A|
|A|
−
∑
i∈A

√
|A|
|A|

= |A| ·

√
|A|
|A|
− |A| ·

√
|A|
|A|

= 0.

Thus f ⊥ 1.

Finally,

‖f‖22 =
n∑

i=1

f2i = |A| · |A|
|A|

+ |A| · |A|
|A|

= |V | = n.

Thus, we have showed that the Ratio-Cut problem is equivalent to

min
A⊂V

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n, fi de�ned as above.

7/15

Relaxing RatioCut (cont.)

We have:

min
A⊂V

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n, fi de�ned as above.

This is a discrete optimization problem since the entries of f

can only take two values:
√
|A|/|A| and −

√
|A|/|A|.

The problem is NP hard.

The natural relaxation of the problem is to remove the

discreteness condition on f and solve

min
f∈Rn

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n.

8/15

Relaxing RatioCut (cont.)

We have:

min
A⊂V

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n, fi de�ned as above.

This is a discrete optimization problem since the entries of f

can only take two values:
√
|A|/|A| and −

√
|A|/|A|.

The problem is NP hard.

The natural relaxation of the problem is to remove the

discreteness condition on f and solve

min
f∈Rn

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n.

8/15

Relaxing RatioCut (cont.)

We have:

min
A⊂V

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n, fi de�ned as above.

This is a discrete optimization problem since the entries of f

can only take two values:
√
|A|/|A| and −

√
|A|/|A|.

The problem is NP hard.

The natural relaxation of the problem is to remove the

discreteness condition on f and solve

min
f∈Rn

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n.

8/15

Relaxing RatioCut (cont.)

We have:

min
A⊂V

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n, fi de�ned as above.

This is a discrete optimization problem since the entries of f

can only take two values:
√
|A|/|A| and −

√
|A|/|A|.

The problem is NP hard.

The natural relaxation of the problem is to remove the

discreteness condition on f and solve

min
f∈Rn

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n.

8/15

Relaxing RatioCut (cont.)

Using properties of the Rayleigh quotient, it is not hard to show
that the solution of

min
f∈Rn

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n.

is an eigenvector of L corresponding to the second eigenvalue of L.

Clearly, if f̃ is the solution of the problem, then

f̃TLf̃ ≤ min
A⊂V

RatioCut(A,A).

How do we get the clusters from f̃?
We could set {

vi ∈ A if fi ≥ 0

vi ∈ A if fi < 0.

More generally, we cluster the coordinates of f using K-means.

This is the unnormalized spectral clustering algorithm for
k = 2.

9/15

Relaxing RatioCut (cont.)

Using properties of the Rayleigh quotient, it is not hard to show
that the solution of

min
f∈Rn

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n.

is an eigenvector of L corresponding to the second eigenvalue of L.

Clearly, if f̃ is the solution of the problem, then

f̃TLf̃ ≤ min
A⊂V

RatioCut(A,A).

How do we get the clusters from f̃?
We could set {

vi ∈ A if fi ≥ 0

vi ∈ A if fi < 0.

More generally, we cluster the coordinates of f using K-means.

This is the unnormalized spectral clustering algorithm for
k = 2.

9/15

Relaxing RatioCut (cont.)

Using properties of the Rayleigh quotient, it is not hard to show
that the solution of

min
f∈Rn

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n.

is an eigenvector of L corresponding to the second eigenvalue of L.

Clearly, if f̃ is the solution of the problem, then

f̃TLf̃ ≤ min
A⊂V

RatioCut(A,A).

How do we get the clusters from f̃?
We could set {

vi ∈ A if fi ≥ 0

vi ∈ A if fi < 0.

More generally, we cluster the coordinates of f using K-means.

This is the unnormalized spectral clustering algorithm for
k = 2.

9/15

Relaxing RatioCut (cont.)

Using properties of the Rayleigh quotient, it is not hard to show
that the solution of

min
f∈Rn

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n.

is an eigenvector of L corresponding to the second eigenvalue of L.

Clearly, if f̃ is the solution of the problem, then

f̃TLf̃ ≤ min
A⊂V

RatioCut(A,A).

How do we get the clusters from f̃?
We could set {

vi ∈ A if fi ≥ 0

vi ∈ A if fi < 0.

More generally, we cluster the coordinates of f using K-means.

This is the unnormalized spectral clustering algorithm for
k = 2.

9/15

Relaxing RatioCut (cont.)

Using properties of the Rayleigh quotient, it is not hard to show
that the solution of

min
f∈Rn

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n.

is an eigenvector of L corresponding to the second eigenvalue of L.

Clearly, if f̃ is the solution of the problem, then

f̃TLf̃ ≤ min
A⊂V

RatioCut(A,A).

How do we get the clusters from f̃?
We could set {

vi ∈ A if fi ≥ 0

vi ∈ A if fi < 0.

More generally, we cluster the coordinates of f using K-means.

This is the unnormalized spectral clustering algorithm for
k = 2.

9/15

Relaxing RatioCut : k > 2

We saw that the second eigenvector of L solves our relaxation of
the RatioCut problem for k = 2.

How do we proceed when we want k > 2 clusters?

Given a partition A1, . . . , Ak of V , we de�ne k indicator vectors

hj = (h1,j , . . . , hn,j) ∈ Rn (j = 1, . . . , k)

as follows:

hi,j :=

1√
|Aj |

if vi ∈ Aj

0 otherwise.

Let H := (hij) ∈ Rn×k. Note that the columns hi of H are
orthonormal, i.e., HTH = Ik×k.

A similar calculation as we did before shows that (exercise):

hTi Lhi =
cut(Ai, Ai)

|Ai|
.

10/15

Relaxing RatioCut : k > 2

We saw that the second eigenvector of L solves our relaxation of
the RatioCut problem for k = 2.
How do we proceed when we want k > 2 clusters?

Given a partition A1, . . . , Ak of V , we de�ne k indicator vectors

hj = (h1,j , . . . , hn,j) ∈ Rn (j = 1, . . . , k)

as follows:

hi,j :=

1√
|Aj |

if vi ∈ Aj

0 otherwise.

Let H := (hij) ∈ Rn×k. Note that the columns hi of H are
orthonormal, i.e., HTH = Ik×k.

A similar calculation as we did before shows that (exercise):

hTi Lhi =
cut(Ai, Ai)

|Ai|
.

10/15

Relaxing RatioCut : k > 2

We saw that the second eigenvector of L solves our relaxation of
the RatioCut problem for k = 2.
How do we proceed when we want k > 2 clusters?

Given a partition A1, . . . , Ak of V , we de�ne k indicator vectors

hj = (h1,j , . . . , hn,j) ∈ Rn (j = 1, . . . , k)

as follows:

hi,j :=

1√
|Aj |

if vi ∈ Aj

0 otherwise.

Let H := (hij) ∈ Rn×k. Note that the columns hi of H are
orthonormal, i.e., HTH = Ik×k.

A similar calculation as we did before shows that (exercise):

hTi Lhi =
cut(Ai, Ai)

|Ai|
.

10/15

Relaxing RatioCut : k > 2

We saw that the second eigenvector of L solves our relaxation of
the RatioCut problem for k = 2.
How do we proceed when we want k > 2 clusters?

Given a partition A1, . . . , Ak of V , we de�ne k indicator vectors

hj = (h1,j , . . . , hn,j) ∈ Rn (j = 1, . . . , k)

as follows:

hi,j :=

1√
|Aj |

if vi ∈ Aj

0 otherwise.

Let H := (hij) ∈ Rn×k. Note that the columns hi of H are
orthonormal, i.e., HTH = Ik×k.

A similar calculation as we did before shows that (exercise):

hTi Lhi =
cut(Ai, Ai)

|Ai|
.

10/15

Relaxing RatioCut : k > 2

We saw that the second eigenvector of L solves our relaxation of
the RatioCut problem for k = 2.
How do we proceed when we want k > 2 clusters?

Given a partition A1, . . . , Ak of V , we de�ne k indicator vectors

hj = (h1,j , . . . , hn,j) ∈ Rn (j = 1, . . . , k)

as follows:

hi,j :=

1√
|Aj |

if vi ∈ Aj

0 otherwise.

Let H := (hij) ∈ Rn×k. Note that the columns hi of H are
orthonormal, i.e., HTH = Ik×k.

A similar calculation as we did before shows that (exercise):

hTi Lhi =
cut(Ai, Ai)

|Ai|
.

10/15

Relaxing RatioCut : k > 2

Now,
hTi Lhi = (HTLH)ii.

Thus,

RatioCut(A1, . . . , Ak) =
k∑

i=1

cut(Ai, Ai)

|Ai|
=

k∑
i=1

hTi Lhi = Tr(HTLH).

So the problem

min
V=A1∪···∪Ak

Ai∩Aj=∅ ∀i 6=j

RatioCut(A1, . . . , Ak)

is equivalent to

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k, H de�ned as above.

As before, we consider a natural relaxation of the problem:

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k.

11/15

Relaxing RatioCut : k > 2

Now,
hTi Lhi = (HTLH)ii.

Thus,

RatioCut(A1, . . . , Ak) =

k∑
i=1

cut(Ai, Ai)

|Ai|
=

k∑
i=1

hTi Lhi = Tr(HTLH).

So the problem

min
V=A1∪···∪Ak

Ai∩Aj=∅ ∀i 6=j

RatioCut(A1, . . . , Ak)

is equivalent to

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k, H de�ned as above.

As before, we consider a natural relaxation of the problem:

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k.

11/15

Relaxing RatioCut : k > 2

Now,
hTi Lhi = (HTLH)ii.

Thus,

RatioCut(A1, . . . , Ak) =

k∑
i=1

cut(Ai, Ai)

|Ai|
=

k∑
i=1

hTi Lhi = Tr(HTLH).

So the problem

min
V=A1∪···∪Ak

Ai∩Aj=∅ ∀i 6=j

RatioCut(A1, . . . , Ak)

is equivalent to

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k, H de�ned as above.

As before, we consider a natural relaxation of the problem:

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k.

11/15

Relaxing RatioCut : k > 2

Now,
hTi Lhi = (HTLH)ii.

Thus,

RatioCut(A1, . . . , Ak) =

k∑
i=1

cut(Ai, Ai)

|Ai|
=

k∑
i=1

hTi Lhi = Tr(HTLH).

So the problem

min
V=A1∪···∪Ak

Ai∩Aj=∅ ∀i 6=j

RatioCut(A1, . . . , Ak)

is equivalent to

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k, H de�ned as above.

As before, we consider a natural relaxation of the problem:

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k.

11/15

Relaxing RatioCut : k > 2

Now,
hTi Lhi = (HTLH)ii.

Thus,

RatioCut(A1, . . . , Ak) =

k∑
i=1

cut(Ai, Ai)

|Ai|
=

k∑
i=1

hTi Lhi = Tr(HTLH).

So the problem

min
V=A1∪···∪Ak

Ai∩Aj=∅ ∀i 6=j

RatioCut(A1, . . . , Ak)

is equivalent to

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k, H de�ned as above.

As before, we consider a natural relaxation of the problem:

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k.
11/15

Relaxing RatioCut : k > 2

Using the Rayleigh-Ritz theorem, we obtain that the solution of
the problem

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k.

is given by the matrix containing the �rst k (normalized)
eigenvectors of L.

How do we get the clusters?
Before the relaxation, the rows of the optimal H indicate to

which cluster each vertex belongs to.
Similar to what we did when k = 2, we cluster the rows of the

matrix H (containing the �rst k eigenvectors of L as columns)
using the K-means algorithm.

12/15

Relaxing RatioCut : k > 2

Using the Rayleigh-Ritz theorem, we obtain that the solution of
the problem

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k.

is given by the matrix containing the �rst k (normalized)
eigenvectors of L.
How do we get the clusters?

Before the relaxation, the rows of the optimal H indicate to
which cluster each vertex belongs to.
Similar to what we did when k = 2, we cluster the rows of the

matrix H (containing the �rst k eigenvectors of L as columns)
using the K-means algorithm.

12/15

Relaxing RatioCut : k > 2

Using the Rayleigh-Ritz theorem, we obtain that the solution of
the problem

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k.

is given by the matrix containing the �rst k (normalized)
eigenvectors of L.
How do we get the clusters?
Before the relaxation, the rows of the optimal H indicate to

which cluster each vertex belongs to.

Similar to what we did when k = 2, we cluster the rows of the
matrix H (containing the �rst k eigenvectors of L as columns)
using the K-means algorithm.

12/15

Relaxing RatioCut : k > 2

Using the Rayleigh-Ritz theorem, we obtain that the solution of
the problem

min
H∈Rn×k

Tr(HTLH)

subject to HTH = Ik×k.

is given by the matrix containing the �rst k (normalized)
eigenvectors of L.
How do we get the clusters?
Before the relaxation, the rows of the optimal H indicate to

which cluster each vertex belongs to.
Similar to what we did when k = 2, we cluster the rows of the

matrix H (containing the �rst k eigenvectors of L as columns)
using the K-means algorithm.

12/15

Unnormalized spectral clustering: summary

The unnormalized spectral clustering algorithm:

Source: von Luxburg, 2007.

13/15

Normalized spectral clustering

Relaxing the RatioCut leads to unnormalized spectral clustering.

By relaxing the Ncut problem, we obtain the Normalized

spectral clustering algorithm of Shi and Malik (2000).

Source: von Luxburg, 2007.

Note: The solutions of Lu = λDu are the eigenvectors of Lrw.

See von Luxburg (2007) for details.

14/15

Normalized spectral clustering

Relaxing the RatioCut leads to unnormalized spectral clustering.
By relaxing the Ncut problem, we obtain the Normalized

spectral clustering algorithm of Shi and Malik (2000).

Source: von Luxburg, 2007.

Note: The solutions of Lu = λDu are the eigenvectors of Lrw.

See von Luxburg (2007) for details.

14/15

Normalized spectral clustering

Relaxing the RatioCut leads to unnormalized spectral clustering.
By relaxing the Ncut problem, we obtain the Normalized

spectral clustering algorithm of Shi and Malik (2000).

Source: von Luxburg, 2007.

Note: The solutions of Lu = λDu are the eigenvectors of Lrw.

See von Luxburg (2007) for details.

14/15

Normalized spectral clustering

Relaxing the RatioCut leads to unnormalized spectral clustering.
By relaxing the Ncut problem, we obtain the Normalized

spectral clustering algorithm of Shi and Malik (2000).

Source: von Luxburg, 2007.

Note: The solutions of Lu = λDu are the eigenvectors of Lrw.

See von Luxburg (2007) for details.

14/15

The normalized clustering algorithm of Ng et al.

Another popular variant of the spectral clustering algorithm was
provided by Ng, Jordan, and Weiss (2002).

The algorithm uses Lsym instead of L (unnormalized clustering)
or Lrw (Shi and Malik's normalized clustering).

Source: von Luxburg, 2007.

See von Luxburg (2007) for details.

15/15

The normalized clustering algorithm of Ng et al.

Another popular variant of the spectral clustering algorithm was
provided by Ng, Jordan, and Weiss (2002).

The algorithm uses Lsym instead of L (unnormalized clustering)
or Lrw (Shi and Malik's normalized clustering).

Source: von Luxburg, 2007.

See von Luxburg (2007) for details.

15/15

