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e G graph with (weighted)
adjacency matrix W = (wj;).
o We define:
W(A, B) = Z Wi -
i€A,jEB
@ |A| := number of vertices in A.
o vol(A) :=> ;.4 d;.

Given a partition Ay, ..., A of the vertices of G, we let

cut(Al, v ,Ak) == Z W(AZ,ZZ)

The min-cut problem consists of solving:

min cut(Aq,..., Ag).
V=A1U-UA, (Ao Ax)
AiNA;=0 Vitj
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Graph cuts (cont.)

@ The min-cut problem can be solved efficiently when k& = 2 (see
Stoer and Wagner 1997).
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@ In many cases, the solution of min-cut simply separates one
individual vertex from the rest of the graph.
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@ The min-cut problem can be solved efficiently when k& = 2 (see
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@ In many cases, the solution of min-cut simply separates one
individual vertex from the rest of the graph.

@ We would like clusters to have a reasonably large number of
points.
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Graph cuts (cont.)

@ The min-cut problem can be solved efficiently when k& = 2 (see
Stoer and Wagner 1997).

@ In practice it often does not lead to satisfactory partitions.

@ In many cases, the solution of min-cut simply separates one
individual vertex from the rest of the graph.

@ We would like clusters to have a reasonably large number of
points.

@ We therefore modify the min-cut problem to enforce such
constraints.
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Balanced cuts

The two most common objective functions that are used as a
replacement to the min-cut objective are:
@ RatioCut (Hagen and Kahng, 1992):

k _
1 W (A, A H(AL L
RatioCut(Aq, ..., A) = 3 E ¥ _ } :cu(‘)

4/15



Balanced cuts

The two most common objective functions that are used as a
replacement to the min-cut objective are:
@ RatioCut (Hagen and Kahng, 1992):

k _
RatioCut(Aq, ..., A) = 3 E ¥ _ } :cu(‘)

4/15



Balanced cuts

The two most common objective functions that are used as a
replacement to the min-cut objective are:
@ RatioCut (Hagen and Kahng, 1992):

k _
RatioCut(Aq, ..., A) = 3 E ¥ _ } :cu(‘)

@ Note: both objective functions take larger values when the
clusters A; are “small”.
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Balanced cuts

The two most common objective functions that are used as a
replacement to the min-cut objective are:

@ RatioCut (Hagen and Kahng, 1992):

k
1
RatioCut(A4q,..., 4 - Z

=1

\A \
@ Normalized cut (Shi and Malik, 2000):

Ncut(Ay, ..., Ag) :=

izl VOI( i)

W (A, &) Zk: cut(A4;, 4;)

N =

@ Note: both objective functions take larger values when the
clusters A; are “small”.

@ Resulting clusters are more “balanced”.
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Balanced cuts

The two most common objective functions that are used as a
replacement to the min-cut objective are:

@ RatioCut (Hagen and Kahng, 1992):

k
1
RatioCut(A4q,..., 4 - Z \A ‘
=1
@ Normalized cut (Shi and Malik, 2000):

Ncut(Ay, ..., Ag) :=

i1 VOI( i)

W (A, &) Zk: cut(Ay, 4;)

N | =

@ Note: both objective functions take larger values when the
clusters A; are “small”.

@ Resulting clusters are more “balanced”.

@ However, the resulting problems are NP hard - see Wagner and
Wagner (1993).
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Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the
Normalized cut problems.
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Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the
Normalized cut problems.

Strategy:

© Express the original problem as a linear algebra problem
involving discrete/combinatorial constraints.

@ Relax/remove the constraints.
RatioCut with k£ = 2: solve

min RatioCut(A4, A).
ACV

Given A C V, let f € R™ be given by

. JIAIA v e A
U =AAL e A
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Relaxing RatioCut

Let L = D — W be the (unnormalized) Laplacian of G. Then

L= Y wlfi— 1)

i,j=1

2 2
1 A |A] 1 4] |A]
= = Wi j — + —_— + = Wii | —A —— — —
) 2 (\/ Aty e 2 VA
i JEA €A, JEA

=W(A,A) <2+ 14 + |A|)

A A
I
‘W(A’A>< IRy )
o L (WAA) | W(EA)
=V 2( A A )

= |V| - RatioCut(4, A4).

since |A| + |A] = |V], and W(A, A) = W(4, A).
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Relaxing RatioCut (cont.)

o We showed:

ffLf = Z wi;(f, = |V] - RatioCut(A, A).
Z] 1
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Relaxing RatioCut (cont.)

@ We showed:
ffLf = Z wi;(f, = |V] - RatioCut(A, A).
Z] 1

@ Moreover, note that

Thus f L 1.

@ Finally,
Al

A
1718 = Zf? Al G+ A =)=
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Relaxing RatioCut (cont.)

o We showed:

ffLf = Z wi;(f, = |V] - RatioCut(A, A).
3,j=1
@ Moreover, note that

- Al Al A
> = ,/'A AL\ A [ =0
i=1 ZGA |

Thus f L 1.

o Finally,
171 = Zf? a1 4 A ] = v =

Thus, we have showed that the Ratio-Cut problem is equivalent to
iy /LS

subject to f L 1,||f|| = v/n, f; defined as above.
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Relaxing RatioCut (cont.)

We have:
. T
L
i /LS
subject to f L 1,[|f|| = v/n, f; defined as above.
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We have:
. T
L
i /LS
subject to f L 1,[|f|| = v/n, f; defined as above.

@ This is a discrete optimization problem since the entries of f

can only take two values: \/|A|/|A| and —/|A]/|A].
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Relaxing RatioCut (cont.)

We have:

: T
L
L

subject to f L 1,[|f|| = v/n, f; defined as above.
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Relaxing RatioCut (cont.)

We have:

: T
L
iy 1111

subject to f L 1,[|f|| = v/n, f; defined as above.

@ This is a discrete optimization problem since the entries of f

can only take two values: \/|A|/|A| and —/|A]/|A].
@ The problem is NP hard.

The natural relaxation of the problem is to remove the
discreteness condition on f and solve

T
L
i 1
subject to f L 1, [|f|| = v/n.
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Relaxing RatioCut (cont.)

@ Using properties of the Rayleigh quotient, it is not hard to show
that the solution of
T
min f* L
min fTLf
subject to f L 1, || f|| = v/n.

is an eigenvector of L corresponding to the second eigenvalue of L.
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Relaxing RatioCut (cont.)

@ Using properties of the Rayleigh quotient, it is not hard to show
that the solution of

: T
L
i ST

subject to f L 1, || f|| = v/n.

is an eigenvector of L corresponding to the second eigenvalue of L.
o Clearly, if f is the solution of the problem, then

T s < . . e .
fPLf < min RatioCut(A, A)
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Relaxing RatioCut (cont.)

@ Using properties of the Rayleigh quotient, it is not hard to show
that the solution of

: T
L
in 17 Lf

subject to f L 1, || f|| = v/n.

is an eigenvector of L corresponding to the second eigenvalue of L.
o Clearly, if f is the solution of the problem, then

T s < . . e .
fPLf < min RatioCut(A, A)

o How do we get the clusters from f7
@ We could set

v, € A if j% >0
'UZ‘EZ iffi<0.
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Relaxing RatioCut (cont.)

@ Using properties of the Rayleigh quotient, it is not hard to show
that the solution of

: T
L
i ST

subject to f L 1, || f|| = v/n.
is an eigenvector of L corresponding to the second eigenvalue of L.
o Clearly, if f is the solution of the problem, then

FTLf < mi i A, A).
f f_jrqrgr&Rathut( ,A)

o How do we get the clusters from f7
@ We could set

'UZ‘EZ if f; <O0.

@ More generally, we cluster the coordinates of f using K-means.

{UZ‘GA iffiZO

9/15



Relaxing RatioCut (cont.)

@ Using properties of the Rayleigh quotient, it is not hard to show
that the solution of

: T
L
i ST

subject to f L 1, || f|| = v/n.
is an eigenvector of L corresponding to the second eigenvalue of L.
o Clearly, if f is the solution of the problem, then

FTLf < mi i A, A).
f f_jrqrgr&Rathut( ,A)

o How do we get the clusters from f7
@ We could set

'UZ‘EZ if f; <O0.

@ More generally, we cluster the coordinates of f using K-means.

{UZ‘GA iffiZO

This is the unnormalized spectral clustering algorithm for
k=2.
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Relaxing RatioCut : k£ > 2

@ We saw that the second eigenvector of L solves our relaxation of
the RatioCut problem for k = 2.
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Relaxing RatioCut : k£ > 2

@ We saw that the second eigenvector of L solves our relaxation of
the RatioCut problem for k = 2.
@ How do we proceed when we want k& > 2 clusters?

Given a partition Ay, ..., Ay of V, we define k indicator vectors
hj:(thv'--vhn,j)eRn (]:1,7143)

as follows:

if v; € Aj

0 otherwise.
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@ We saw that the second eigenvector of L solves our relaxation of
the RatioCut problem for k = 2.
@ How do we proceed when we want k& > 2 clusters?

Given a partition Ay, ..., Ay of V, we define k indicator vectors
hj:(thv'--vhn,j)eRn (]:1,7143)

as follows:
1

hi,j = V |45

0 otherwise.

if v; € Aj

Let H := (hij) € R™**. Note that the columns h; of H are
orthonormal, i.e., H'H = I1.}.
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Relaxing RatioCut : k£ > 2

@ We saw that the second eigenvector of L solves our relaxation of
the RatioCut problem for k = 2.
@ How do we proceed when we want k& > 2 clusters?

Given a partition Ay, ..., Ay of V, we define k indicator vectors
hj:(h17jv'--7hn,j)€Rn (]:1,7143)

as follows:
1

hi,j = V |45

0 otherwise.

if v; € Aj

Let H := (hij) € R™**. Note that the columns h; of H are
orthonormal, i.e., H'H = I1.}.

A similar calculation as we did before shows that (exercise):

cut(AZ-, Zl)

hl Lh; =
| Ai
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Relaxing RatioCut : k£ > 2

@ Now,
hI'Lh; = (HTLH);.

11/15



Relaxing RatioCut : k£ > 2

@ Now,
hI'Lh; = (HTLH);.
@ Thus,

k
RatioCut(Ay, ..., Ay) = Y 228 cut(A | A‘ As) ZhTLh — Te(HTLH).

=1 =1
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Relaxing RatioCut : k£ > 2

@ Now,
hI'Lh; = (HTLH);.
@ Thus,
k C'llt(Ai 27) k
RatioCut(Ay, ..., Ax) = T"' => hl'Lh; = Tr(H"LH).
i=1 @ i=1

@ So the problem
min RatioCut (A, ..., Ax)

V=A1U---UAL
AiNA;=0 Vi)
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Relaxing RatioCut : k£ > 2

@ Now,
hI'Lh; = (HTLH);.
@ Thus,
» cut(A;, A;)
RatioCut(Ay, ..., Ay) = »  ——"—= | A | ZhTLh =Tr(HTLH).

=1 1=1
@ So the problem

min RatioCut (A, ..., Ax)
V=A1U---UAL
AiNA;=0 Vi)
is equivalent to

min Tr(HTLH)
HeRn X k

subject to HTH = Ik, H defined as above.
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Relaxing RatioCut : k£ > 2

@ Now,
hI'Lh; = (HTLH);.
@ Thus,
- k
RatioCut(Ay, ..., Ax) = ‘m('j““m => hl'Lh; = Tr(H"LH).
i=1 g i=1

@ So the problem

min RatioCut (A, ..., Ax)
V=A1U---UAL
AiNA;=0 Vi)

is equivalent to

min Tr(HTLH)
HeRn X k

subject to HTH = Ik, H defined as above.
@ As before, we consider a natural relaxation of the problem:

min Tr(HTLH)
HeRnxk

subject to HTH = I,«p.
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Relaxing RatioCut : k£ > 2

@ Using the Rayleigh-Ritz theorem, we obtain that the solution of
the problem

min Tr(HTLH)
HeRnxk
subject to HTH = Iy

is given by the matrix containing the first k& (normalized)
eigenvectors of L.
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Relaxing RatioCut : k£ > 2

@ Using the Rayleigh-Ritz theorem, we obtain that the solution of
the problem

min Tr(HTLH)
HeRnxk

subject to HTH = Iy

is given by the matrix containing the first k& (normalized)
eigenvectors of L.

@ How do we get the clusters?

o Before the relaxation, the rows of the optimal H indicate to
which cluster each vertex belongs to.

@ Similar to what we did when k& = 2, we cluster the rows of the
matrix H (containing the first k eigenvectors of L as columns)
using the K-means algorithm.
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Unnormalized spectral clustering: summary

The unnormalized spectral clustering algorithm:

Unnormalized spectral clustering

Input: Similarity matrix S € R™*", number %k of clusters to construct.
e Construct a similarity graph by one of the ways described in Section 2. Let W
be its weighted adjacency matrix.

e Compute the unnormalized Laplacian L.

¢ Compute the first k eigenvectors uq,...,u; of L.

e Let U/ € R"** be the matrix containing the vectors ug,...,u; as columns.

e For i=1,...,n, let y; € R* be the vector corresponding to the i-th row of U.

e Cluster the points (y1)1:1,,,,,,l in R¥ with the k-means algorithm into clusters
Ciyo G

Output: Clusters Aj,..., A, with A; = {j|y; € Ci}.

Source: von Luxburg, 2007.
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Normalized spectral clustering

@ Relaxing the RatioCut leads to unnormalized spectral clustering.
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@ Relaxing the RatioCut leads to unnormalized spectral clustering.
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spectral clustering algorithm of Shi and Malik (2000).

14/15



Normalized spectral clustering

@ Relaxing the RatioCut leads to unnormalized spectral clustering.
@ By relaxing the Ncut problem, we obtain the Normalized
spectral clustering algorithm of Shi and Malik (2000).

Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity matrix S € R™", number k of clusters to construct.

e Construct a similarity graph by one of the ways described in Section 2. Let W
be its weighted adjacency matrix.

Compute the unnormalized Laplacian L.

Compute the first k generalized eigenvectors ui,...,ur of the generalized eigenprob-
lem Lu = ADu.

Let U/ € R"** be the matrix containing the vectors uy,...,u; as columns.

For i=1,...,n, let g € R be the vector corresponding to the i-th row of U.
Cluster the points (y;);:lymyn in R* with the k-means algorithm into clusters
Cryonn, Ok

Output: Clusters Aj,...,: A with A; = {j|y; € Ci}.

Source: von Luxburg, 2007.
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Normalized spectral clustering

@ Relaxing the RatioCut leads to unnormalized spectral clustering.
@ By relaxing the Ncut problem, we obtain the Normalized
spectral clustering algorithm of Shi and Malik (2000).

Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity matrix S € R™", number k of clusters to construct.

e Construct a similarity graph by one of the ways described in Section 2. Let W
be its weighted adjacency matrix.

Compute the unnormalized Laplacian L.

Compute the first k generalized eigenvectors ui,...,ur of the generalized eigenprob-
lem Lu = ADu.

Let U/ € R"** be the matrix containing the vectors uy,...,u; as columns.

For i=1,...,n, let g € R be the vector corresponding to the i-th row of U.
Cluster the points (¥i)i=1. . n in R* with the k-means algorithm into clusters
Cryonn, Ok

Output: Clusters Aj,...,: A with A; = {j|y; € Ci}.

Source: von Luxburg, 2007.
@ Note: The solutions of Lu = ADwu are the eigenvectors of L.

See von Luxburg (2007) for details.
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The normalized clustering algorithm of Ng et al.

@ Another popular variant of the spectral clustering algorithm was
provided by Ng, Jordan, and Weiss (2002).

@ The algorithm uses Lgyr, instead of L (unnormalized clustering)
or Lyyw (Shi and Malik's normalized clustering).
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The normalized clustering algorithm of Ng et al.

@ Another popular variant of the spectral clustering algorithm was
provided by Ng, Jordan, and Weiss (2002).

@ The algorithm uses Lgyr, instead of L (unnormalized clustering)
or Lyyw (Shi and Malik's normalized clustering).

Normalized spectral clustering according to Ng, Jordan, and Weiss (2002)

Input: Similarity matrix S € R™*™, number %k of clusters to construct.
e Construct a similarity graph by one of the ways described in Section 2. Let W
be its weighted adjacency matrix.

e Compute the normalized Laplacian Lsym.
e Compute the first k eigenvectors u1,...,ur of Leym.
e Let U € R"** be the matrix containing the vectors uj,...,u; as columns.
e Form the matrix 7' € R"** from U by normalizing the rows to norm 1,
that is set t;; = u;;/ (), 'ufk)lﬂ.
e For i=1,...,n, let 3 € R be the vector corresponding to the i-th row of 7.
e Cluster the points (¥i)i=1,..n with the k-means algorithm into clusters Ci,...,Cj.
Output: Clusters Aj,...,« A with A; = {j|y; € Ci}.

Source: von Luxburg, 2007.

See von Luxburg (2007) for details.
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