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Distribution of regression coe�cients

Observations Y = (yi) ∈ Rn, X = (xij) ∈ Rn×p.

Assumptions:

1 Yi = β1Xi,1 + · · ·+ βpXi,p + εi (εi = error).
In other words:

Y = Xβ + ε.

(β = (β1, . . . βp) is a �xed unknown vector)

2 xij are non-random. εi are random.

3 εi are independent N(0, σ2).

We have

β̂ = (XTX)−1XTY.

What is the distribution of β̂?
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Multivariate normal distribution

Recall: X = (X1, . . . , Xp) ∼ N(µ,Σ) where

µ ∈ Rp,
Σ = (σij) ∈ Rp×p is positive de�nite,

if

P (X ∈ A) =
1√

(2π)p det Σ

∫
A
e−

1
2

(x−µ)T Σ−1(x−µ) dx1 . . . dxp.

Bivariate case:

We have

E(X) = µ, Cov(Xi, Xj) = σij .

If Y = c+BX, where c ∈ Rp and B ∈ Rm×p, then

Y ∼ N(c+Bµ,BΣBT ).
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Distribution of the regression coe�cients (cont.)

Back to our problem: Y = Xβ + ε where εi are iid N(0, σ2). We

have

Y ∼ N(Xβ, σ2I).

Therefore,

β̂ = (XTX)−1XTY ∼ N(β, σ2(XTX)−1).

In particular,

E(β̂) = β.

Thus, β̂ is unbiased.
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Statistical consistency of least squares

We saw that E(β̂) = β.

What happens as the sample size n goes to in�nity? We

expect β̂ = β̂(n)→ β.

A sequence of estimators {θn}∞n=1 of a parameter θ is said to be

consistent if θn → θ in probability (θn
p→ θ) as n→∞.

(Recall: θn
p→ θ if for every ε > 0,

lim
n→∞

P (|θn − θ| ≥ ε) = 0.

In order to prove that β̂n (estimator with n samples) is consistent,

we will make some assumptions on the data generating model.

(Without any assumptions, nothing prevents the observations to be

all the same for example. . . )
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Statistical consistency of least squares (cont.)

Observations: y = (yi) ∈ Rn, X = (xij) ∈ Rn×p.

Let

xi := (xi,1, . . . , xi,n) ∈ Rp (i = 1, . . . , n).

We will assume:

1 (xi)
n
i=1 are iid random vectors.

2 yi = β1xi,1 + · · ·+ βpxi,p + εi where εi are iid N(0, σ2).

3 The error εi is independent of xi.

4 Ex2
ij <∞ (�nite second moment).

5 Q = E(xix
T
i ) ∈ Rp×p is invertible.

Under these assumptions, we have the following theorem.

Theorem: Let β̂n = (XTX)−1XT y. Then, under the above

assumptions, we have

β̂n
p→ β.
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Background for the proof

Recall:

Weak law of large numbers: Let (Xi)
∞
i=1 be iid random

variables with �nite �rst moment E(|Xi|) <∞. Let µ := E(Xi).
Then

Xn :=
1

n

n∑
i=1

Xi
p→ µ.

Continuous mapping theorem: Let S, S′ be metric spaces.

Suppose (Xi)
∞
i=1 are S-valued random variables such that Xi

p→ X.

Let g : S → S′. Denote by Dg the set of points in S where g is

discontinuous and suppose P (X ∈ Dg) = 0. Then g(Xn)
p→ g(X).
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Proof of the theorem

We have

β̂ = (XTX)−1XT y =

(
1

n

n∑
i=1

xix
T
i

)−1(
1

n

n∑
i=1

xiyi

)
.

Using Cauchy�Schwarz,

E(|xijxik|) ≤ (E(x2
ij)E(x2

ik))
1/2 <∞.

In a similar way, we prove that E(|xijyi|) <∞.

By the weak law of large numbers, we obtain

1

n

n∑
i=1

xix
T
i

p→ E(xix
T
i ) = Q,

1

n

n∑
i=1

xiyi
p→ E(xiyi).

8/9



Proof of the theorem

We have

β̂ = (XTX)−1XT y =

(
1

n

n∑
i=1

xix
T
i

)−1(
1

n

n∑
i=1

xiyi

)
.

Using Cauchy�Schwarz,

E(|xijxik|) ≤ (E(x2
ij)E(x2

ik))
1/2 <∞.

In a similar way, we prove that E(|xijyi|) <∞.

By the weak law of large numbers, we obtain

1

n

n∑
i=1

xix
T
i

p→ E(xix
T
i ) = Q,

1

n

n∑
i=1

xiyi
p→ E(xiyi).

8/9



Proof of the theorem

We have

β̂ = (XTX)−1XT y =

(
1

n

n∑
i=1

xix
T
i

)−1(
1

n

n∑
i=1

xiyi

)
.

Using Cauchy�Schwarz,

E(|xijxik|) ≤ (E(x2
ij)E(x2

ik))
1/2 <∞.

In a similar way, we prove that E(|xijyi|) <∞.

By the weak law of large numbers, we obtain

1

n

n∑
i=1

xix
T
i

p→ E(xix
T
i ) = Q,

1

n

n∑
i=1

xiyi
p→ E(xiyi).

8/9



Proof of the theorem

We have

β̂ = (XTX)−1XT y =

(
1

n

n∑
i=1

xix
T
i

)−1(
1

n

n∑
i=1

xiyi

)
.

Using Cauchy�Schwarz,

E(|xijxik|) ≤ (E(x2
ij)E(x2

ik))
1/2 <∞.

In a similar way, we prove that E(|xijyi|) <∞.

By the weak law of large numbers, we obtain

1

n

n∑
i=1

xix
T
i

p→ E(xix
T
i ) = Q,

1

n

n∑
i=1

xiyi
p→ E(xiyi).

8/9



Proof of the theorem (cont.)

Using the continuous mapping theorem, we obtain

β̂n
p→ E(xix

T
i )−1E(xiyi).

(de�ne g : Rp×p × Rp → Rp by g(A, b) = A−1b.)

Recall: yi = xTi β + εi. So

xiyi = xix
T
i β + xiεi.

Taking expectations,

E(xiyi) = E(xix
T
i )β + E(xiεi).

Note that E(xiεi) = 0 since xi and εi are independent by

assumption.

We conclude that

β = E(xix
T
i )−1E(xiyi)

and so β̂n
p→ β.
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