MATH 829: Introduction to Data Mining and Analysis
 Consistency of Linear Regression

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

February 15, 2016

Distribution of regression coefficients

Observations $Y=\left(y_{i}\right) \in \mathbb{R}^{n}, X=\left(x_{i j}\right) \in R^{n \times p}$.

Distribution of regression coefficients

Observations $Y=\left(y_{i}\right) \in \mathbb{R}^{n}, X=\left(x_{i j}\right) \in R^{n \times p}$.

Assumptions:

(1) $Y_{i}=\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}+\epsilon_{i} \quad\left(\epsilon_{i}=\right.$ error $)$.

Distribution of regression coefficients

Observations $Y=\left(y_{i}\right) \in \mathbb{R}^{n}, X=\left(x_{i j}\right) \in R^{n \times p}$.

Assumptions:

(1) $Y_{i}=\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}+\epsilon_{i} \quad\left(\epsilon_{i}=\right.$ error $)$.

In other words:

$$
Y=X \beta+\epsilon
$$

$\left(\beta=\left(\beta_{1}, \ldots \beta_{p}\right)\right.$ is a fixed unknown vector)

Distribution of regression coefficients

Observations $Y=\left(y_{i}\right) \in \mathbb{R}^{n}, X=\left(x_{i j}\right) \in R^{n \times p}$.

Assumptions:

(1) $Y_{i}=\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}+\epsilon_{i} \quad\left(\epsilon_{i}=\right.$ error $)$.

In other words:

$$
Y=X \beta+\epsilon
$$

($\beta=\left(\beta_{1}, \ldots \beta_{p}\right)$ is a fixed unknown vector)
(2) $x_{i j}$ are non-random. ϵ_{i} are random.

Distribution of regression coefficients

Observations $Y=\left(y_{i}\right) \in \mathbb{R}^{n}, X=\left(x_{i j}\right) \in R^{n \times p}$.

Assumptions:

(1) $Y_{i}=\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}+\epsilon_{i} \quad\left(\epsilon_{i}=\right.$ error $)$.

In other words:

$$
Y=X \beta+\epsilon
$$

($\beta=\left(\beta_{1}, \ldots \beta_{p}\right)$ is a fixed unknown vector)
(2) $x_{i j}$ are non-random. ϵ_{i} are random.
(3) ϵ_{i} are independent $N\left(0, \sigma^{2}\right)$.

We have

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

Distribution of regression coefficients

Observations $Y=\left(y_{i}\right) \in \mathbb{R}^{n}, X=\left(x_{i j}\right) \in R^{n \times p}$.

Assumptions:

(1) $Y_{i}=\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}+\epsilon_{i} \quad\left(\epsilon_{i}=\right.$ error $)$.

In other words:

$$
Y=X \beta+\epsilon
$$

($\beta=\left(\beta_{1}, \ldots \beta_{p}\right)$ is a fixed unknown vector)
(2) $x_{i j}$ are non-random. ϵ_{i} are random.
(3) ϵ_{i} are independent $N\left(0, \sigma^{2}\right)$.

We have

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

What is the distribution of $\hat{\beta}$?

Multivariate normal distribution

Recall: $X=\left(X_{1}, \ldots, X_{p}\right) \sim N(\mu, \Sigma)$ where

- $\mu \in \mathbb{R}^{p}$,
- $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{R}^{p \times p}$ is positive definite,
if

$$
P(X \in A)=\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det} \Sigma}} \int_{A} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)} d x_{1} \ldots d x_{p}
$$

Multivariate normal distribution

Recall: $X=\left(X_{1}, \ldots, X_{p}\right) \sim N(\mu, \Sigma)$ where

- $\mu \in \mathbb{R}^{p}$,
- $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{R}^{p \times p}$ is positive definite,
if

$$
P(X \in A)=\frac{1}{\sqrt{(2 \pi)^{p}} \operatorname{det} \Sigma} \int_{A} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)} d x_{1} \ldots d x_{p} .
$$

Bivariate case:

Multivariate normal distribution

Recall: $X=\left(X_{1}, \ldots, X_{p}\right) \sim N(\mu, \Sigma)$ where

- $\mu \in \mathbb{R}^{p}$,
- $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{R}^{p \times p}$ is positive definite,
if

$$
P(X \in A)=\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det} \Sigma}} \int_{A} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)} d x_{1} \ldots d x_{p} .
$$

Bivariate case:

We have

$$
E(X)=\mu, \quad \operatorname{Cov}\left(X_{i}, X_{j}\right)=\sigma_{i j} .
$$

Multivariate normal distribution

Recall: $X=\left(X_{1}, \ldots, X_{p}\right) \sim N(\mu, \Sigma)$ where

- $\mu \in \mathbb{R}^{p}$,
- $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{R}^{p \times p}$ is positive definite,
if

$$
P(X \in A)=\frac{1}{\sqrt{(2 \pi)^{p}} \operatorname{det} \Sigma} \int_{A} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)} d x_{1} \ldots d x_{p} .
$$

Bivariate case:

We have

$$
E(X)=\mu, \quad \operatorname{Cov}\left(X_{i}, X_{j}\right)=\sigma_{i j} .
$$

If $Y=c+B X$, where $c \in \mathbb{R}^{p}$ and $B \in \mathbb{R}^{m \times p}$, then

$$
Y \sim N\left(c+B \mu, B \Sigma B^{T}\right)
$$

Distribution of the regression coefficients (cont.)

Back to our problem: $Y=X \beta+\epsilon$ where ϵ_{i} are iid $N\left(0, \sigma^{2}\right)$. We have

$$
Y \sim N\left(X \beta, \sigma^{2} I\right)
$$

Distribution of the regression coefficients (cont.)

Back to our problem: $Y=X \beta+\epsilon$ where ϵ_{i} are iid $N\left(0, \sigma^{2}\right)$. We have

$$
Y \sim N\left(X \beta, \sigma^{2} I\right)
$$

Therefore,

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y \sim N\left(\beta, \sigma^{2}\left(X^{T} X\right)^{-1}\right)
$$

Distribution of the regression coefficients (cont.)

Back to our problem: $Y=X \beta+\epsilon$ where ϵ_{i} are iid $N\left(0, \sigma^{2}\right)$. We have

$$
Y \sim N\left(X \beta, \sigma^{2} I\right)
$$

Therefore,

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y \sim N\left(\beta, \sigma^{2}\left(X^{T} X\right)^{-1}\right)
$$

In particular,

$$
E(\hat{\beta})=\beta
$$

Thus, $\hat{\beta}$ is unbiased.

Statistical consistency of least squares

- We saw that $E(\hat{\beta})=\beta$.

Statistical consistency of least squares

- We saw that $E(\hat{\beta})=\beta$.
- What happens as the sample size n goes to infinity? We expect $\hat{\beta}=\hat{\beta}(n) \rightarrow \beta$.

Statistical consistency of least squares

- We saw that $E(\hat{\beta})=\beta$.
- What happens as the sample size n goes to infinity? We expect $\hat{\beta}=\hat{\beta}(n) \rightarrow \beta$.
A sequence of estimators $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ of a parameter θ is said to be consistent if $\theta_{n} \rightarrow \theta$ in probability $\left(\theta_{n} \xrightarrow{p} \theta\right)$ as $n \rightarrow \infty$.

Statistical consistency of least squares

- We saw that $E(\hat{\beta})=\beta$.
- What happens as the sample size n goes to infinity? We expect $\hat{\beta}=\hat{\beta}(n) \rightarrow \beta$.
A sequence of estimators $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ of a parameter θ is said to be consistent if $\theta_{n} \rightarrow \theta$ in probability $\left(\theta_{n} \xrightarrow{p} \theta\right)$ as $n \rightarrow \infty$.
(Recall: $\theta_{n} \xrightarrow{p} \theta$ if for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|\theta_{n}-\theta\right| \geq \epsilon\right)=0
$$

Statistical consistency of least squares

- We saw that $E(\hat{\beta})=\beta$.
- What happens as the sample size n goes to infinity? We expect $\hat{\beta}=\hat{\beta}(n) \rightarrow \beta$.
A sequence of estimators $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ of a parameter θ is said to be consistent if $\theta_{n} \rightarrow \theta$ in probability ($\theta_{n} \xrightarrow{p} \theta$) as $n \rightarrow \infty$.
(Recall: $\theta_{n} \xrightarrow{p} \theta$ if for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|\theta_{n}-\theta\right| \geq \epsilon\right)=0
$$

In order to prove that $\hat{\beta}_{n}$ (estimator with n samples) is consistent, we will make some assumptions on the data generating model.

Statistical consistency of least squares

- We saw that $E(\hat{\beta})=\beta$.
- What happens as the sample size n goes to infinity? We expect $\hat{\beta}=\hat{\beta}(n) \rightarrow \beta$.
A sequence of estimators $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ of a parameter θ is said to be consistent if $\theta_{n} \rightarrow \theta$ in probability $\left(\theta_{n} \xrightarrow{p} \theta\right)$ as $n \rightarrow \infty$.
(Recall: $\theta_{n} \xrightarrow{p} \theta$ if for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|\theta_{n}-\theta\right| \geq \epsilon\right)=0
$$

In order to prove that $\hat{\beta}_{n}$ (estimator with n samples) is consistent, we will make some assumptions on the data generating model. (Without any assumptions, nothing prevents the observations to be all the same for example...)

Statistical consistency of least squares (cont.)

Observations: $y=\left(y_{i}\right) \in \mathbb{R}^{n}, X=\left(x_{i j}\right) \in \mathbb{R}^{n \times p}$.

Statistical consistency of least squares (cont.)

$$
\begin{aligned}
& \text { Observations: } y=\left(y_{i}\right) \in \mathbb{R}^{n}, X=\left(x_{i j}\right) \in \mathbb{R}^{n \times p} \text {. Let } \\
& \mathbf{x}_{i}:=\left(x_{i, 1}, \ldots, x_{i, n}\right) \in \mathbb{R}^{p} \quad(i=1, \ldots, n) .
\end{aligned}
$$

Statistical consistency of least squares (cont.)

Observations: $y=\left(y_{i}\right) \in \mathbb{R}^{n}, X=\left(x_{i j}\right) \in \mathbb{R}^{n \times p}$. Let
$\mathbf{x}_{i}:=\left(x_{i, 1}, \ldots, x_{i, n}\right) \in \mathbb{R}^{p} \quad(i=1, \ldots, n)$.
We will assume:
(1) $\left(\mathbf{x}_{i}\right)_{i=1}^{n}$ are iid random vectors.
(2) $y_{i}=\beta_{1} x_{i, 1}+\cdots+\beta_{p} x_{i, p}+\epsilon_{i}$ where ϵ_{i} are iid $N\left(0, \sigma^{2}\right)$.
(3) The error ϵ_{i} is independent of \mathbf{x}_{i}.
(9) $E x_{i j}^{2}<\infty$ (finite second moment).
(3) $Q=E\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \in \mathbb{R}^{p \times p}$ is invertible.

Statistical consistency of least squares (cont.)

Observations: $y=\left(y_{i}\right) \in \mathbb{R}^{n}, X=\left(x_{i j}\right) \in \mathbb{R}^{n \times p}$. Let
$\mathbf{x}_{i}:=\left(x_{i, 1}, \ldots, x_{i, n}\right) \in \mathbb{R}^{p} \quad(i=1, \ldots, n)$.
We will assume:
(1) $\left(\mathbf{x}_{i}\right)_{i=1}^{n}$ are iid random vectors.
(2) $y_{i}=\beta_{1} x_{i, 1}+\cdots+\beta_{p} x_{i, p}+\epsilon_{i}$ where ϵ_{i} are iid $N\left(0, \sigma^{2}\right)$.
(3) The error ϵ_{i} is independent of \mathbf{x}_{i}.
(9) $E x_{i j}^{2}<\infty$ (finite second moment).
(3) $Q=E\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \in \mathbb{R}^{p \times p}$ is invertible.

Under these assumptions, we have the following theorem.
Theorem: Let $\hat{\beta}_{n}=\left(X^{T} X\right)^{-1} X^{T} y$. Then, under the above assumptions, we have

$$
\hat{\beta}_{n} \xrightarrow{p} \beta .
$$

Background for the proof

Recall:
Weak law of large numbers: Let $\left(X_{i}\right)_{i=1}^{\infty}$ be iid random variables with finite first moment $E\left(\left|X_{i}\right|\right)<\infty$. Let $\mu:=E\left(X_{i}\right)$. Then

$$
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{p} \mu
$$

Background for the proof

Recall:
Weak law of large numbers: Let $\left(X_{i}\right)_{i=1}^{\infty}$ be iid random variables with finite first moment $E\left(\left|X_{i}\right|\right)<\infty$. Let $\mu:=E\left(X_{i}\right)$. Then

$$
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{p} \mu
$$

Continuous mapping theorem: Let S, S^{\prime} be metric spaces. Suppose $\left(X_{i}\right)_{i=1}^{\infty}$ are S-valued random variables such that $X_{i} \xrightarrow{p} X$. Let $g: S \rightarrow S^{\prime}$. Denote by D_{g} the set of points in S where g is discontinuous and suppose $P\left(X \in D_{g}\right)=0$. Then $g\left(X_{n}\right) \xrightarrow{p} g(X)$.

Proof of the theorem

We have

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} y_{i}\right) .
$$

Proof of the theorem

We have

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} y_{i}\right) .
$$

Using Cauchy-Schwarz,

$$
E\left(\left|x_{i j} x_{i k}\right|\right) \leq\left(E\left(x_{i j}^{2}\right) E\left(x_{i k}^{2}\right)\right)^{1 / 2}<\infty .
$$

Proof of the theorem

We have

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} y_{i}\right) .
$$

Using Cauchy-Schwarz,

$$
E\left(\left|x_{i j} x_{i k}\right|\right) \leq\left(E\left(x_{i j}^{2}\right) E\left(x_{i k}^{2}\right)\right)^{1 / 2}<\infty .
$$

In a similar way, we prove that $E\left(\left|x_{i j} y_{i}\right|\right)<\infty$.

We have

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} y_{i}\right) .
$$

Using Cauchy-Schwarz,

$$
E\left(\left|x_{i j} x_{i k}\right|\right) \leq\left(E\left(x_{i j}^{2}\right) E\left(x_{i k}^{2}\right)\right)^{1 / 2}<\infty .
$$

In a similar way, we prove that $E\left(\left|x_{i j} y_{i}\right|\right)<\infty$.
By the weak law of large numbers, we obtain

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \xrightarrow{p} E\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)=Q \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} y_{i} \xrightarrow{p} E\left(\mathbf{x}_{i} y_{i}\right)
\end{aligned}
$$

Using the continuous mapping theorem, we obtain

$$
\hat{\beta}_{n} \xrightarrow{p} E\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1} E\left(\mathbf{x}_{i} y_{i}\right) .
$$

(define $g: \mathbb{R}^{p \times p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ by $g(A, b)=A^{-1} b$.)

Using the continuous mapping theorem, we obtain

$$
\hat{\beta}_{n} \xrightarrow{p} E\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1} E\left(\mathbf{x}_{i} y_{i}\right) .
$$

(define $g: \mathbb{R}^{p \times p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ by $g(A, b)=A^{-1} b$.)
Recall: $y_{i}=\mathbf{x}_{i}^{T} \beta+\epsilon_{i}$. So

$$
\mathbf{x}_{i} y_{i}=\mathbf{x}_{i} \mathbf{x}_{i}^{T} \beta+\mathbf{x}_{i} \epsilon_{i}
$$

Using the continuous mapping theorem, we obtain

$$
\hat{\beta}_{n} \xrightarrow{p} E\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1} E\left(\mathbf{x}_{i} y_{i}\right) .
$$

(define $g: \mathbb{R}^{p \times p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ by $g(A, b)=A^{-1} b$.)
Recall: $y_{i}=\mathbf{x}_{i}^{T} \beta+\epsilon_{i}$. So

$$
\mathbf{x}_{i} y_{i}=\mathbf{x}_{i} \mathbf{x}_{i}^{T} \beta+\mathbf{x}_{i} \epsilon_{i}
$$

Taking expectations,

$$
E\left(\mathbf{x}_{i} y_{i}\right)=E\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \beta+E\left(\mathbf{x}_{i} \epsilon_{i}\right)
$$

Using the continuous mapping theorem, we obtain

$$
\hat{\beta}_{n} \xrightarrow{p} E\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1} E\left(\mathbf{x}_{i} y_{i}\right) .
$$

(define $g: \mathbb{R}^{p \times p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ by $g(A, b)=A^{-1} b$.)
Recall: $y_{i}=\mathbf{x}_{i}^{T} \beta+\epsilon_{i}$. So

$$
\mathbf{x}_{i} y_{i}=\mathbf{x}_{i} \mathbf{x}_{i}^{T} \beta+\mathbf{x}_{i} \epsilon_{i}
$$

Taking expectations,

$$
E\left(\mathbf{x}_{i} y_{i}\right)=E\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \beta+E\left(\mathbf{x}_{i} \epsilon_{i}\right) .
$$

Note that $E\left(\mathbf{x}_{i} \epsilon_{i}\right)=0$ since \mathbf{x}_{i} and ϵ_{i} are independent by assumption.

Using the continuous mapping theorem, we obtain

$$
\hat{\beta}_{n} \xrightarrow{p} E\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1} E\left(\mathbf{x}_{i} y_{i}\right) .
$$

(define $g: \mathbb{R}^{p \times p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ by $g(A, b)=A^{-1} b$.)
Recall: $y_{i}=\mathbf{x}_{i}^{T} \beta+\epsilon_{i}$. So

$$
\mathbf{x}_{i} y_{i}=\mathbf{x}_{i} \mathbf{x}_{i}^{T} \beta+\mathbf{x}_{i} \epsilon_{i}
$$

Taking expectations,

$$
E\left(\mathbf{x}_{i} y_{i}\right)=E\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \beta+E\left(\mathbf{x}_{i} \epsilon_{i}\right) .
$$

Note that $E\left(\mathbf{x}_{i} \epsilon_{i}\right)=0$ since \mathbf{x}_{i} and ϵ_{i} are independent by assumption.
We conclude that

$$
\beta=E\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1} E\left(\mathbf{x}_{i} y_{i}\right)
$$

and so $\hat{\beta}_{n} \xrightarrow{p} \beta$.

