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Distribution of regression coefficients

Observations Y = (y;) € R", X = (z;5) € R™*?.
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Distribution of regression coefficients

Observations Y = (y;) € R", X = (z;5) € R™*?.
Assumptions:
QY =058Xi1+-+BXip+e (€; = error).
In other words:
Y=X0+e
(8= (Bi,...0Bp) is a fixed unknown vector)
@ z;; are non-random. ¢; are random.
© ¢; are independent N(0,0?).
We have
B=(xTx)"'xTy.
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Distribution of regression coefficients

Observations Y = (y;) € R", X = (z;5) € R™*?.
Assumptions:

QY =058Xi1+-+BXip+e (€; = error).
In other words:
Y=X0+e
(8= (Bi,...0Bp) is a fixed unknown vector)
@ z;; are non-random. ¢; are random.
© ¢; are independent N(0,0?).
We have
B=(XTx)"'xTy.

What is the distribution of 37
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Multivariate normal distribution

Recall: X = (X1,...,X,) ~ N(u,X) where

o necRP,
@ ¥ = (0;;) € RP*P is positive definite,
if
1 1 Ty—1
PXEA :/GQ(I'M)E (xi'u)d$ d.’]}'
( ) VE@m)Pdets Ja ' ?
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Multivariate normal distribution
Recall: X = (X1,...,X

p) ~ N(u,3) where
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@ ¥ = (0;;) € RP*P is positive definite,
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Multivariate normal distribution
Recall: X = (X1,...,X

p) ~ N(u,3) where
o i € RP,

@ ¥ = (0;;) € RP*P is positive definite,
if

P(X € A) = L

L / 3@ TS ) gp
(2m)Pdet X Ja
Bivariate case:

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

We have

E(X)=up, Cov(Xj X;)=o0.
If Y =c+ BX, where ¢ € RP and B € R™*P, then

Y ~ N(c+ Bu, BEBT).
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Distribution of the regression coefficients (cont.)

Back to our problem: Y = X3 + ¢ where ¢; are iid N(0,0%). We
have
Y ~ N(XB,0°I).
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Distribution of the regression coefficients (cont.)

Back to our problem: Y = X3 + ¢ where ¢; are iid N(0,0%). We
have
Y ~ N(XB,0°I).

Therefore,

B=XTX)'XTY ~ N(B,02(XTX)7).
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Distribution of the regression coefficients (cont.)

Back to our problem: Y = X3 + ¢ where ¢; are iid N(0,0%). We
have
Y ~ N(XB,0°I).

Therefore,
B=XTX)'XTY ~ N(B,0*(XT X)),

In particular, R
E(B) = B.
Thus, 3 is unbiased.
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Statistical consistency of least squares

o We saw that E(j3) = 8.
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Statistical consistency of least squares

e We saw that E(5) = 5.
@ What happens as the sample size n goes to infinity? We
expect 8 = fB(n) — B.
A sequence of estimators {6, }°° ; of a parameter 6 is said to be
consistent if 6,, — 0 in probability (6, 2 0) as n — .
(Recall: 6, 5 6 if for every € > 0,
lim P(|f, — 6] > ¢) = 0.

n—oo

In order to prove that 3, (estimator with n samples) is consistent,
we will make some assumptions on the data generating model.

(Without any assumptions, nothing prevents the observations to be
all the same for example...)
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Statistical consistency of least squares (cont.)

Observations: y = (y;) € R", X = (x;5) € R"*P.
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Statistical consistency of least squares (cont.)

Observations: y = (y;) € R", X = (2;5) € R"*P. Let
X; = (l’i,h...,xim)GRP (i:1,...,n).
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Statistical consistency of least squares (cont.)

Observations: y = (y;) € R", X = (2;5) € R"*P. Let
X; = (l’i,h...,xim)GRP (i:1,...,n).
We will assume:
Q (x;), are iid random vectors.
Q yi = Pixig + -+ Bpxip + € where €; are iid N(0,0?).
© The error ¢; is independent of x;.
(4] Ex?j < oo (finite second moment).

Q Q = E(x;x}) € RP*P is invertible.

6/9



Statistical consistency of least squares (cont.)

Observations: y = (y;) € R", X = (2;5) € R"*P. Let
X = (xi1,...,Tin) €ERP (i=1,...,n).
We will assume:
Q (x;), are iid random vectors.
Q yi = Pixig + -+ Bpxip + € where €; are iid N(0,0?).
© The error ¢; is independent of x;.
(%) Ex?j < oo (finite second moment).
Q Q = E(x;x}) € RP*P is invertible.
Under these assumptions, we have the following theorem.

Theorem: Let 3, = (XTX)~2XTy. Then, under the above
assumptions, we have

B =+ B.
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Background for the proof

Recall:

Weak law of large numbers: Let (X;)$°; be iid random
variables with finite first moment E(| X;|) < co. Let p:= E(Xj;).

Then
_ 1 & »
Xy = - Z;Xi = W
1=
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Background for the proof

Recall:

Weak law of large numbers: Let (X;)$°; be iid random
variables with finite first moment E(| X;|) < co. Let p:= E(Xj;).
Then

_ 1 <&
X, = - ZXi EN L
=1
Continuous mapping theorem: Let S, S’ be metric spaces.

Suppose (X;)2, are S-valued random variables such that X; % X.
Let g : S — S’. Denote by D, the set of points in S where g is

discontinuous and suppose P(X € D,) = 0. Then g(X,) 5 g(X).

7/9



Proof of the theorem

We have

-1 n
e (150) ()
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Proof of the theorem

We have

n -1 n
. 1 1
= (XTX) 'xTy= |- ix; —
B ( ) ) (n ;X X; - ; X; Y
Using Cauchy-Schwarz,

E(|zijzal) < (E(x3)E(a,)"? < oo,

In a similar way, we prove that E(|z;;y;|) < cc.

By the weak law of large numbers, we obtain

1 n
- inxiT 2 Bxix!) = Q,
1=1

1 — »
- inyi = B(xiy:).

i=1
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Proof of the theorem (cont.)
Using the continuous mapping theorem, we obtain
B = B(xix] ) E(xiys)-
(define g : RP*P x RP — RP by g(A4,b) = A~'b.)
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Proof of the theorem (cont.)
Using the continuous mapping theorem, we obtain
B, B E(xxD) ™ E(xy).

(define g : RP*P x RP — RP by g(A,b) = A71b))
Recall: y; = x!3+¢;. So

T
XiYi = XiX; B+ X;€;.
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Proof of the theorem (cont.)
Using the continuous mapping theorem, we obtain
B, B E(xxD) ™ E(xy).

(define g : RP*P x RP — RP by g(A,b) = A71b))
Recall: y; = x!3+¢;. So

T
Xl = XiX; B+ Xi€;.
Taking expectations,

E(xiy;) = BE(x;x!) 8 + E(x;€;).
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Proof of the theorem (cont.)

Using the continuous mapping theorem, we obtain
B, B E(Xix?)_lE(xiyi).

(define g : RP*P x RP — RP by g(A,b) = A71b))
Recall: y; = x!3+¢;. So

XiYi = XiXZTﬁ + X;€;.
Taking expectations,
E(xy;) = E(xlsz)ﬁ + E(x;€;).

Note that F(x;e;) = 0 since x; and ¢; are independent by
assumption.
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Proof of the theorem (cont.)

Using the continuous mapping theorem, we obtain
B, B E(Xix?)_lE(xiyi).

(define g : RP*P x RP — RP by g(A,b) = A71b))
Recall: y; = x!3+¢;. So

XiYi = XiXZTﬁ + X;€;.
Taking expectations,
E(xy;) = E(xlsz)ﬁ + E(x;€;).

Note that F(x;e;) = 0 since x; and ¢; are independent by
assumption.

We conclude that
B = E(xx]) ' E(xy;)

and so ﬁn 2 8. O
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