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Independence and conditional independence: motivation

We begin with a classical example (Whittaker, 1990):

We study the examination marks of 88 students in �ve subjects:
mechanics, vectors, algebra, analysis, statistics (Mardia, Kent, and
Bibby, 1979).

Mechanics and vectors were closed books.

All the remaining exams were open books.

We can examine the results using a stem and leaf plot.

algebra statistics

0- 9
10- 45778889
20- 1 012455699
30- 1266677889 0011122333344556677799
40- 0113333345566667777888999999 00000001123444555556679
50- 000000111223333344455666778899 0113346
60- 000111123455578 11233447888
70- 12 033
80- 0 1111
90-

Note: Data appears to be normally distributed.
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Example (cont.)

We compute the correlation between the grades of the students:

mech 1.0
vect 0.55 1.0
alg 0.55 0.61 1.0
anal 0.41 0.49 0.71 1.0
stat 0.39 0.44 0.66 0.61 1.0

mech vect alg anal stat

We observe that the grades are positively correlated between

subjects (performance of a student across subjects (good or

bad) is consistent).

We now examine the inverse correlation matrix:

mech 1.60
vect -0.56 1.80
alg -0.51 -0.66 3.04
anal 0.00 -0.15 -1.11 2.18
stat -0.04 -0.04 -0.86 -0.52 1.92

mech vect alg anal stat
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Example (cont.)

Interpreting the inverse correlation matrix:

Diagonal entries = 1/(1−R2) are related to the proportion of
variance explained by regressing the variable on the other variables.

O�-diagonal entries: proportional to the correlation of pairs of
variables, given the rest of the variables.

For example, R2
mech

= (1.60− 1)/1.60 = 37.5%.

For the o�-diagonal entries, we �rst scale the inverse correlation matrix

Ω = (ωij) by computing
ωij√
ωiiωjj

:

mech 1.0
vect -0.33 1.0
alg -0.23 -0.28 1.0
anal 0.00 -0.08 -0.43 1.0
stat -0.02 -0.02 -0.36 -0.25 1.0

mech vect alg anal stat

The o�-diagonal entries of the scaled inverse correlation matrix are the

negative of the conditional correlation coe�cients (i.e., the

correlation coe�cients after conditioning on the rest of the variables).
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Example (cont.)

Notation:

We denote the fact that two random variables X and Y are

independent by X ⊥⊥ Y .

We write X ⊥⊥ Y |{Z1, . . . , Zn} when X and Y are

independent given Z1, . . . , Zn.

When the context is clear (i.e. when working with a �xed

collection of random variables {X1, . . . , Xn}, we write

Xi ⊥⊥ Xj | rest

instead of Xi ⊥⊥ Xj |{Xk : 1 ≤ k ≤ n, k 6= i, j}.
Important: In general, uncorrelated variables are not independent.

This is true however for the multivariate Gaussian distribution.
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Example (cont.)

We noted before that our data appears to be Gaussian.

Therefore it

appears that:

1 anal ⊥⊥ mech | rest.
2 anal ⊥⊥ vect | rest.
3 stat ⊥⊥ mech | rest.
4 stat ⊥⊥ vect | rest.

We represent these relations using a graph:

We put no edge between two variables i� they are conditionally

independent (given the rest of the variables).
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Independence and factorizations

Graphical models (a.k.a Markov random �elds) are multivariate

probability models whose independence structure is characterized by

a graph.

Recall: Independence of random vectors is characterized by a

factorization of their joint density:

Independent variables: For two random vectors X,Y :

X ⊥⊥ Y ⇔ fX,Y (x, y) = g(x)h(y) ∀x, y

for some functions g, h.

Conditionally independent variables: Similarly, for three

random vectors X,Y, Z:

X ⊥⊥ Y |Z ⇔ fX,Y,Z(x, y, z) = g(x, z)h(y, z)

for all x, y and all z for which fZ(z) > 0.
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Independence graphs

Let X = (X1, . . . , Xp) be a random vector.

The conditional independence graph of X is the graph

G = (V,E) where V = {1, . . . , p} and

(i, j) 6∈ E ⇔ Xi ⊥⊥ Xj | rest.

A subset S ⊂ V is said to separate A ⊂ V from B ⊂ V if

every path from A to B contains a vertex in S.

Notation: If X = (X1, . . . , Xp) and A ⊂ {1, . . . , p}, then
XA := (Xi : i ∈ A).

Theorem: (the separation theorem) Suppose the density of X is

positive and continuous. Let V = A ∪ S ∪B be a partition of V
such that S separates A from B. Then

XA ⊥⊥ XB | XS .
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Independence graphs (cont.)

Example: X = (X1, X2, X3, X4, X5, X6, X7, X8, X9):

Then

(X1, X2, X3, X4) ⊥⊥ (X7, X8, X9)|(X5, X6).
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Markov properties

Let X = (X1, . . . , Xp) be a random vector and let G be a graph on

{1, . . . , p}. The vector is said to satisfy:

1 The pairwise Markov property if Xi ⊥⊥ Xj | rest whenever
(i, j) 6∈ E.

2 The local Markov property if for every vertex i ∈ V ,

Xi ⊥⊥ XV \cl(i)|Xne(i),

where ne(i) = {j ∈ V : (i, j) ∈ E, j 6= i} and
cl(i) = {i} ∪ ne(i).

3 The global Markov property if for every disjoint subsets

A,S,B ⊂ V such that S separates A from B in G, we have

XA ⊥⊥ XB | XS .

Clearly, global ⇒ local ⇒ pairwise.

When X has a positive and continuous density, by the separation

theorem,
pairwise ⇒ global

and so all three properties are equivalent.
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When X has a positive and continuous density, by the separation

theorem,
pairwise ⇒ global

and so all three properties are equivalent.
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Example: the local Markov property

Illustration of the local Markov property:
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The Hammersley�Cli�ord theorem

An undirected graphical model (a.k.a. Markov random �eld) is

a set of random variables satisfying a Markov property.

Independence and conditional independence correspond to a

factorization of the joint density.

It is natural to try to characterize Markov properties via a

factorization of the joint density.

The Hammersley�Cli�ord theorem provides a necessary and

su�cient condition for a random vector to have a Markov random

�eld structure.

Theorem:(Hammersley�Cli�ord) Let X be a random vector with a

positive and continuous density f . Then X satis�es the pairwise

Markov property with respect to a graph G if and only if

f(x) =
∏
C∈C

ψC(xC),

where C is the set of (maximal) cliques (complete subgraphs) of G.
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