MATH 829: Introduction to Data Mining and Analysis Graphical Models I

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

May 2, 2016

Independence and conditional independence: motivation

We begin with a classical example (Whittaker, 1990):

- We study the examination marks of 88 students in five subjects: mechanics, vectors, algebra, analysis, statistics (Mardia, Kent, and Bibby, 1979).
- Mechanics and vectors were closed books.
- All the remaining exams were open books.

Independence and conditional independence: motivation

We begin with a classical example (Whittaker, 1990):

- We study the examination marks of 88 students in five subjects: mechanics, vectors, algebra, analysis, statistics (Mardia, Kent, and Bibby, 1979).
- Mechanics and vectors were closed books.
- All the remaining exams were open books.

We can examine the results using a stem and leaf plot.
algebra

$0-$	
$10-$	
$20-$	1
$30-$	1266677889
$40-$	0113333345566667777888999999
$50-$	000000111223333344455666778899
$60-$	000111123455578
$70-$	12
$80-$	0
$90-$	

statistics

9
45778889
012455699
0011122333344556677799
00000001123444555556679
0113346
11233447888
033
1111

Independence and conditional independence: motivation

We begin with a classical example (Whittaker, 1990):

- We study the examination marks of 88 students in five subjects: mechanics, vectors, algebra, analysis, statistics (Mardia, Kent, and Bibby, 1979).
- Mechanics and vectors were closed books.
- All the remaining exams were open books.

We can examine the results using a stem and leaf plot.

	algebra	statistics
$0-$		9
$10-$		45778889
$20-$	1	012455699
$30-$	1266677889	0011122333344556677799
$40-$	0113333345566667777888999999	00000001123444555556679
$50-$	000000111223333344455666778899	0113346
$60-$	000111123455578	11233447888
$70-$	12	033
$80-$	0	1111
$90-$		

Note: Data appears to be normally distributed.

Example (cont.)

We compute the correlation between the grades of the students:

mech	1.0				
vect	0.55	1.0			
alg	0.55	0.61	1.0		
anal	0.41	0.49	0.71	1.0	
stat	0.39	0.44	0.66	0.61	1.0
	mech	vect	alg	anal	stat

We compute the correlation between the grades of the students:

mech	1.0				
vect	0.55	1.0			
alg	0.55	0.61	1.0		
anal	0.41	0.49	0.71	1.0	
stat	0.39	0.44	0.66	0.61	1.0
	mech	vect	alg	anal	stat

- We observe that the grades are positively correlated between subjects (performance of a student across subjects (good or bad) is consistent).

We compute the correlation between the grades of the students:

mech	1.0				
vect	0.55	1.0			
alg	0.55	0.61	1.0		
anal	0.41	0.49	0.71	1.0	
stat	0.39	0.44	0.66	0.61	1.0
	mech	vect	alg	anal	stat

- We observe that the grades are positively correlated between subjects (performance of a student across subjects (good or bad) is consistent).
We now examine the inverse correlation matrix:

mech	1.60				
vect	-0.56	1.80			
alg	-0.51	-0.66	3.04		
anal	$\mathbf{0 . 0 0}$	$\mathbf{- 0 . 1 5}$	-1.11	2.18	
stat	$\mathbf{- 0 . 0 4}$	$\mathbf{- 0 . 0 4}$	-0.86	-0.52	1.92
	mech	vect	alg	anal	stat

Example (cont.)

Interpreting the inverse correlation matrix:

Example (cont.)

Interpreting the inverse correlation matrix:

- Diagonal entries $=1 /\left(1-R^{2}\right)$ are related to the proportion of variance explained by regressing the variable on the other variables.

Interpreting the inverse correlation matrix:

- Diagonal entries $=1 /\left(1-R^{2}\right)$ are related to the proportion of variance explained by regressing the variable on the other variables.
- Off-diagonal entries: proportional to the correlation of pairs of variables, given the rest of the variables.

Interpreting the inverse correlation matrix:

- Diagonal entries $=1 /\left(1-R^{2}\right)$ are related to the proportion of variance explained by regressing the variable on the other variables.
- Off-diagonal entries: proportional to the correlation of pairs of variables, given the rest of the variables.
For example, $R_{\text {mech }}^{2}=(1.60-1) / 1.60=37.5 \%$.

Interpreting the inverse correlation matrix:

- Diagonal entries $=1 /\left(1-R^{2}\right)$ are related to the proportion of variance explained by regressing the variable on the other variables.
- Off-diagonal entries: proportional to the correlation of pairs of variables, given the rest of the variables.
For example, $R_{\text {mech }}^{2}=(1.60-1) / 1.60=37.5 \%$.
For the off-diagonal entries, we first scale the inverse correlation matrix $\Omega=\left(\omega_{i j}\right)$ by computing $\frac{\omega_{i j}}{\sqrt{\omega_{i i} \omega_{j j}}}$:

Interpreting the inverse correlation matrix:

- Diagonal entries $=1 /\left(1-R^{2}\right)$ are related to the proportion of variance explained by regressing the variable on the other variables.
- Off-diagonal entries: proportional to the correlation of pairs of variables, given the rest of the variables.
For example, $R_{\text {mech }}^{2}=(1.60-1) / 1.60=37.5 \%$.
For the off-diagonal entries, we first scale the inverse correlation matrix $\Omega=\left(\omega_{i j}\right)$ by computing $\frac{\omega_{i j}}{\sqrt{\omega_{i i} \omega_{j j}}}$:

mech	1.0				
vect	-0.33	1.0			
alg	-0.23	-0.28	1.0		
anal	$\mathbf{0 . 0 0}$	$\mathbf{- 0 . 0 8}$	-0.43	1.0	
stat	$-\mathbf{0 . 0 2}$	$\mathbf{- 0 . 0 2}$	-0.36	-0.25	1.0
	mech	vect	alg	anal	stat

Interpreting the inverse correlation matrix:

- Diagonal entries $=1 /\left(1-R^{2}\right)$ are related to the proportion of variance explained by regressing the variable on the other variables.
- Off-diagonal entries: proportional to the correlation of pairs of variables, given the rest of the variables.
For example, $R_{\text {mech }}^{2}=(1.60-1) / 1.60=37.5 \%$.
For the off-diagonal entries, we first scale the inverse correlation matrix $\Omega=\left(\omega_{i j}\right)$ by computing $\frac{\omega_{i j}}{\sqrt{\omega_{i i} \omega_{j j}}}$:

mech	1.0				
vect	-0.33	1.0			
alg	-0.23	-0.28	1.0		
anal	$\mathbf{0 . 0 0}$	$\mathbf{- 0 . 0 8}$	-0.43	1.0	
stat	$\mathbf{- 0 . 0 2}$	$-\mathbf{0 . 0 2}$	-0.36	-0.25	1.0
	mech	vect	alg	anal	stat

The off-diagonal entries of the scaled inverse correlation matrix are the negative of the conditional correlation coefficients (i.e., the correlation coefficients after conditioning on the rest of the variables).

Example (cont.)

Notation:

Example (cont.)

Notation:

- We denote the fact that two random variables X and Y are independent by $X \Perp Y$.

Example (cont.)

Notation:

- We denote the fact that two random variables X and Y are independent by $X \Perp Y$.
- We write $X \Perp Y \mid\left\{Z_{1}, \ldots, Z_{n}\right\}$ when X and Y are independent given Z_{1}, \ldots, Z_{n}.

Notation:

- We denote the fact that two random variables X and Y are independent by $X \Perp Y$.
- We write $X \Perp Y \mid\left\{Z_{1}, \ldots, Z_{n}\right\}$ when X and Y are independent given Z_{1}, \ldots, Z_{n}.
- When the context is clear (i.e. when working with a fixed collection of random variables $\left\{X_{1}, \ldots, X_{n}\right\}$, we write

$$
X_{i} \Perp X_{j} \mid \text { rest }
$$

instead of $X_{i} \Perp X_{j} \mid\left\{X_{k}: 1 \leq k \leq n, k \neq i, j\right\}$.

Notation:

- We denote the fact that two random variables X and Y are independent by $X \Perp Y$.
- We write $X \Perp Y \mid\left\{Z_{1}, \ldots, Z_{n}\right\}$ when X and Y are independent given Z_{1}, \ldots, Z_{n}.
- When the context is clear (i.e. when working with a fixed collection of random variables $\left\{X_{1}, \ldots, X_{n}\right\}$, we write

$$
X_{i} \Perp X_{j} \mid \text { rest }
$$

instead of $X_{i} \Perp X_{j} \mid\left\{X_{k}: 1 \leq k \leq n, k \neq i, j\right\}$.
Important: In general, uncorrelated variables are not independent. This is true however for the multivariate Gaussian distribution.

Example (cont.)

We noted before that our data appears to be Gaussian.

Example (cont.)

We noted before that our data appears to be Gaussian. Therefore it appears that:
(1) anal \Perp mech | rest.
(2) anal \Perp vect | rest.
(3) stat \Perp mech \mid rest.
(4) stat \Perp vect \mid rest.

Example (cont.)

We noted before that our data appears to be Gaussian. Therefore it appears that:
(1) anal \Perp mech | rest.
(2) anal \Perp vect | rest.
(3) stat \Perp mech \mid rest.
(1) stat \Perp vect \mid rest.

We represent these relations using a graph:

Example (cont.)

We noted before that our data appears to be Gaussian. Therefore it appears that:
(1) anal \Perp mech | rest.
(2) anal \Perp vect | rest.
(3) stat \Perp mech | rest.
(9) stat \Perp vect \mid rest.

We represent these relations using a graph:

We noted before that our data appears to be Gaussian. Therefore it appears that:
(1) anal \Perp mech | rest.
(2) anal \Perp vect | rest.
(3) stat \Perp mech \mid rest.
(1) stat \Perp vect \mid rest.

We represent these relations using a graph:

We put no edge between two variables iff they are conditionally independent (given the rest of the variables).

Independence and factorizations

Graphical models (a.k.a Markov random fields) are multivariate probability models whose independence structure is characterized by a graph.

Independence and factorizations

Graphical models (a.k.a Markov random fields) are multivariate probability models whose independence structure is characterized by a graph.
Recall: Independence of random vectors is characterized by a factorization of their joint density:

Independence and factorizations

Graphical models (a.k.a Markov random fields) are multivariate probability models whose independence structure is characterized by a graph.
Recall: Independence of random vectors is characterized by a factorization of their joint density:

- Independent variables: For two random vectors X, Y :

$$
X \Perp Y \quad \Leftrightarrow \quad f_{X, Y}(x, y)=g(x) h(y) \quad \forall x, y
$$

for some functions g, h.

Independence and factorizations

Graphical models (a.k.a Markov random fields) are multivariate probability models whose independence structure is characterized by a graph.
Recall: Independence of random vectors is characterized by a factorization of their joint density:

- Independent variables: For two random vectors X, Y :

$$
X \Perp Y \quad \Leftrightarrow \quad f_{X, Y}(x, y)=g(x) h(y) \quad \forall x, y
$$

for some functions g, h.

- Conditionally independent variables: Similarly, for three random vectors X, Y, Z :

$$
X \Perp Y \mid Z \quad \Leftrightarrow \quad f_{X, Y, Z}(x, y, z)=g(x, z) h(y, z)
$$

for all x, y and all z for which $f_{Z}(z)>0$.

Independence graphs

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ be a random vector.

Independence graphs

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ be a random vector.

- The conditional independence graph of X is the graph $G=(V, E)$ where $V=\{1, \ldots, p\}$ and

$$
(i, j) \notin E \quad \Leftrightarrow \quad X_{i} \Perp X_{j} \mid \text { rest. }
$$

Independence graphs

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ be a random vector.

- The conditional independence graph of X is the graph $G=(V, E)$ where $V=\{1, \ldots, p\}$ and

$$
(i, j) \notin E \quad \Leftrightarrow \quad X_{i} \Perp X_{j} \mid \text { rest. }
$$

- A subset $S \subset V$ is said to separate $A \subset V$ from $B \subset V$ if every path from A to B contains a vertex in S.

Independence graphs

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ be a random vector.

- The conditional independence graph of X is the graph $G=(V, E)$ where $V=\{1, \ldots, p\}$ and

$$
(i, j) \notin E \quad \Leftrightarrow \quad X_{i} \Perp X_{j} \mid \text { rest. }
$$

- A subset $S \subset V$ is said to separate $A \subset V$ from $B \subset V$ if every path from A to B contains a vertex in S.
Notation: If $X=\left(X_{1}, \ldots, X_{p}\right)$ and $A \subset\{1, \ldots, p\}$, then $X_{A}:=\left(X_{i}: i \in A\right)$.

Independence graphs

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ be a random vector.

- The conditional independence graph of X is the graph $G=(V, E)$ where $V=\{1, \ldots, p\}$ and

$$
(i, j) \notin E \quad \Leftrightarrow \quad X_{i} \Perp X_{j} \mid \text { rest. }
$$

- A subset $S \subset V$ is said to separate $A \subset V$ from $B \subset V$ if every path from A to B contains a vertex in S.
Notation: If $X=\left(X_{1}, \ldots, X_{p}\right)$ and $A \subset\{1, \ldots, p\}$, then $X_{A}:=\left(X_{i}: i \in A\right)$.
Theorem: (the separation theorem) Suppose the density of X is positive and continuous. Let $V=A \cup S \cup B$ be a partition of V such that S separates A from B. Then

$$
X_{A} \Perp X_{B} \mid X_{S}
$$

Independence graphs (cont.)

Example: $X=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}, X_{9}\right)$:

Independence graphs (cont.)

Example: $X=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}, X_{9}\right)$:

Then

$$
\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \Perp\left(X_{7}, X_{8}, X_{9}\right) \mid\left(X_{5}, X_{6}\right) .
$$

Markov properties

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ be a random vector and let G be a graph on $\{1, \ldots, p\}$. The vector is said to satisfy:

Markov properties

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ be a random vector and let G be a graph on $\{1, \ldots, p\}$. The vector is said to satisfy:
(1) The pairwise Markov property if $X_{i} \Perp X_{j} \mid$ rest whenever $(i, j) \notin E$.

Markov properties

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ be a random vector and let G be a graph on $\{1, \ldots, p\}$. The vector is said to satisfy:
(1) The pairwise Markov property if $X_{i} \Perp X_{j} \mid$ rest whenever $(i, j) \notin E$.
(2) The local Markov property if for every vertex $i \in V$,

$$
X_{i} \Perp X_{V \backslash \mathrm{cl}(i)} \mid X_{\operatorname{ne}(i)},
$$

where ne $(i)=\{j \in V:(i, j) \in E, j \neq i\}$ and $\mathrm{cl}(\mathrm{i})=\{i\} \cup \operatorname{ne}(i)$.

Markov properties

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ be a random vector and let G be a graph on $\{1, \ldots, p\}$. The vector is said to satisfy:
(1) The pairwise Markov property if $X_{i} \Perp X_{j} \mid$ rest whenever $(i, j) \notin E$.
(2 The local Markov property if for every vertex $i \in V$,

$$
X_{i} \Perp X_{V \backslash \mathrm{cl}(i)} \mid X_{\mathrm{ne}(i)},
$$

where ne $(i)=\{j \in V:(i, j) \in E, j \neq i\}$ and $\mathrm{cl}(\mathrm{i})=\{i\} \cup \mathrm{ne}(i)$.

- The global Markov property if for every disjoint subsets $A, S, B \subset V$ such that S separates A from B in G, we have

$$
X_{A} \Perp X_{B} \mid X_{S} .
$$

Markov properties

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ be a random vector and let G be a graph on $\{1, \ldots, p\}$. The vector is said to satisfy:
(c) The pairwise Markov property if $X_{i} \Perp X_{j} \mid$ rest whenever $(i, j) \notin E$.
(2) The local Markov property if for every vertex $i \in V$,

$$
X_{i} \Perp X_{V \backslash \mathrm{cl}(i)} \mid X_{\mathrm{ne}(i)},
$$

where ne $(i)=\{j \in V:(i, j) \in E, j \neq i\}$ and $\mathrm{cl}(\mathrm{i})=\{i\} \cup \mathrm{ne}(i)$.

- The global Markov property if for every disjoint subsets $A, S, B \subset V$ such that S separates A from B in G, we have

$$
X_{A} \Perp X_{B} \mid X_{S} .
$$

- Clearly, global \Rightarrow local \Rightarrow pairwise.

Markov properties

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ be a random vector and let G be a graph on $\{1, \ldots, p\}$. The vector is said to satisfy:
(1) The pairwise Markov property if $X_{i} \Perp X_{j} \mid$ rest whenever $(i, j) \notin E$.
(2) The local Markov property if for every vertex $i \in V$,

$$
X_{i} \Perp X_{V \backslash \mathrm{cl}(i)} \mid X_{\operatorname{ne}(i)},
$$

where ne $(i)=\{j \in V:(i, j) \in E, j \neq i\}$ and $\mathrm{cl}(\mathrm{i})=\{i\} \cup \mathrm{ne}(i)$.

- The global Markov property if for every disjoint subsets $A, S, B \subset V$ such that S separates A from B in G, we have

$$
X_{A} \Perp X_{B} \mid X_{S} .
$$

- Clearly, global \Rightarrow local \Rightarrow pairwise.
- When X has a positive and continuous density, by the separation theorem,

$$
\text { pairwise } \Rightarrow \text { global }
$$

and so all three properties are equivalent.

Example: the local Markov property

Illustration of the local Markov property:

- $\Perp \bullet$ - \bullet
- An undirected graphical model (a.k.a. Markov random field) is a set of random variables satisfying a Markov property.
- An undirected graphical model (a.k.a. Markov random field) is a set of random variables satisfying a Markov property.
- Independence and conditional independence correspond to a factorization of the joint density.
- An undirected graphical model (a.k.a. Markov random field) is a set of random variables satisfying a Markov property.
- Independence and conditional independence correspond to a factorization of the joint density.
- It is natural to try to characterize Markov properties via a factorization of the joint density.
- An undirected graphical model (a.k.a. Markov random field) is a set of random variables satisfying a Markov property.
- Independence and conditional independence correspond to a factorization of the joint density.
- It is natural to try to characterize Markov properties via a factorization of the joint density.
- The Hammersley-Clifford theorem provides a necessary and sufficient condition for a random vector to have a Markov random field structure.
- An undirected graphical model (a.k.a. Markov random field) is a set of random variables satisfying a Markov property.
- Independence and conditional independence correspond to a factorization of the joint density.
- It is natural to try to characterize Markov properties via a factorization of the joint density.
- The Hammersley-Clifford theorem provides a necessary and sufficient condition for a random vector to have a Markov random field structure.

Theorem:(Hammersley-Clifford) Let X be a random vector with a positive and continuous density f. Then X satisfies the pairwise Markov property with respect to a graph G if and only if

$$
f(x)=\prod_{C \in \mathcal{C}} \psi_{C}\left(x_{C}\right)
$$

where \mathcal{C} is the set of (maximal) cliques (complete subgraphs) of G.

