MATH 829: Introduction to Data Mining and Analysis Graphical Models II - Gaussian Graphical Models

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

May 4, 2016

• An undirected graphical model is a set of random variables $\{X_1, \ldots, X_p\}$ satisfying a Markov property.

- An undirected graphical model is a set of random variables $\{X_1, \ldots, X_p\}$ satisfying a Markov property.
- Let G = (V, E) be a graph on $\{1, \ldots, p\}$.

- An undirected graphical model is a set of random variables $\{X_1, \ldots, X_p\}$ satisfying a Markov property.
- Let G = (V, E) be a graph on $\{1, \ldots, p\}$.
- The pairwise Markov property: $X_i \perp \!\!\!\perp X_j \mid \text{rest}$ whenever $(i, j) \notin E$.

- An undirected graphical model is a set of random variables $\{X_1,\ldots,X_p\}$ satisfying a Markov property.
- Let G = (V, E) be a graph on $\{1, \ldots, p\}$.
- The pairwise Markov property: $X_i \perp \!\!\!\perp X_j \mid \text{rest}$ whenever $(i, j) \notin E$.
- If the density of $X = (X_1, \ldots, X_p)$ is continuous and positive, then

pairwise \Leftrightarrow local \Leftrightarrow global.

- An undirected graphical model is a set of random variables $\{X_1,\ldots,X_p\}$ satisfying a Markov property.
- Let G = (V, E) be a graph on $\{1, \ldots, p\}$.
- The pairwise Markov property: $X_i \perp \!\!\!\perp X_j \mid \text{rest}$ whenever $(i, j) \notin E$.
- If the density of $X = (X_1, \ldots, X_p)$ is continuous and positive, then

pairwise \Leftrightarrow local \Leftrightarrow global.

• The Hammersley–Clifford theorem provides a necessary and sufficient condition for a random vector to have a Markov random field structure with respect to a given graph G.

- An undirected graphical model is a set of random variables $\{X_1,\ldots,X_p\}$ satisfying a Markov property.
- Let G = (V, E) be a graph on $\{1, \ldots, p\}$.
- The pairwise Markov property: $X_i \perp \!\!\!\perp X_j \mid \text{rest}$ whenever $(i, j) \notin E$.
- If the density of $X = (X_1, \ldots, X_p)$ is continuous and positive, then

pairwise \Leftrightarrow local \Leftrightarrow global.

• The Hammersley-Clifford theorem provides a necessary and sufficient condition for a random vector to have a Markov random field structure with respect to a given graph G.

We will now turn our attention to the special case of a random vector with a multivariate **Gaussian** distribution.

Recall: $X = (X_1, \ldots, X_p) \sim N(\mu, \Sigma)$ where $\mu \in \mathbb{R}^p$ and $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ is positive definite if

$$P(X \in A) = \frac{1}{\sqrt{(2\pi)^p \det \Sigma}} \int_A e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} dx_1 \dots dx_p.$$

Recall: $X = (X_1, \ldots, X_p) \sim N(\mu, \Sigma)$ where $\mu \in \mathbb{R}^p$ and $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ is positive definite if

$$P(X \in A) = \frac{1}{\sqrt{(2\pi)^p \det \Sigma}} \int_A e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} dx_1 \dots dx_p.$$

Multivariate Normal Distributio

Bivariate case:

Recall: $X = (X_1, \ldots, X_p) \sim N(\mu, \Sigma)$ where $\mu \in \mathbb{R}^p$ and $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ is positive definite if

$$P(X \in A) = \frac{1}{\sqrt{(2\pi)^p \det \Sigma}} \int_A e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} dx_1 \dots dx_p.$$

Multivariate Normal Distributio

Bivariate case:

 $E(X) = \mu$, $Cov(X_i, X_j) = \sigma_{ij}$.

Recall: $X = (X_1, \ldots, X_p) \sim N(\mu, \Sigma)$ where $\mu \in \mathbb{R}^p$ and $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ is positive definite if

$$P(X \in A) = \frac{1}{\sqrt{(2\pi)^p \det \Sigma}} \int_A e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} dx_1 \dots dx_p.$$

Multivariate Normal Distribute

Bivariate case:

We have

$$E(X) = \mu$$
, $Cov(X_i, X_j) = \sigma_{ij}$.

If Y = c + BX, where $c \in \mathbb{R}^p$ and $B \in \mathbb{R}^{m \times p}$, then $Y \sim N(c + B\mu, B\Sigma B^T).$

Recall: $X = (X_1, \ldots, X_p) \sim N(\mu, \Sigma)$ where $\mu \in \mathbb{R}^p$ and $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ is positive definite if

$$P(X \in A) = \frac{1}{\sqrt{(2\pi)^p \det \Sigma}} \int_A e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} dx_1 \dots dx_p.$$

lutivariate Normal Distribut

Bivariate case:

We have

$$E(X) = \mu$$
, $Cov(X_i, X_j) = \sigma_{ij}$.

If Y = c + BX, where $c \in \mathbb{R}^p$ and $B \in \mathbb{R}^{m \times p}$, then $Y \sim N(c + B\mu, B\Sigma B^T).$

Note: $\Omega := \Sigma^{-1}$ is called the *precision* matrix or the *concentration* matrix of the distribution.

Let

$$M := \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

where $A = A_{m \times m}$, $B = B_{m \times n}$, $C = C_{n \times m}$, and $D = D_{n \times n}$.

Let

$$M := \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

where $A = A_{m \times m}$, $B = B_{m \times n}$, $C = C_{n \times m}$, and $D = D_{n \times n}$. Assuming D is invertible, the *Schur complement* of D in M is

$$M/D := A - BD^{-1}C.$$

Let

$$M := \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

where $A = A_{m \times m}$, $B = B_{m \times n}$, $C = C_{n \times m}$, and $D = D_{n \times n}$. Assuming D is invertible, the *Schur complement* of D in M is

$$M/D := A - BD^{-1}C.$$

Important properties:

Let

$$M := \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

where $A = A_{m \times m}$, $B = B_{m \times n}$, $C = C_{n \times m}$, and $D = D_{n \times n}$. Assuming D is invertible, the *Schur complement* of D in M is

$$M/D := A - BD^{-1}C.$$

Important properties:

- 2 $M \in \mathbb{P}_{n+m}$ if and only if $D \in \mathbb{P}_n$ and $M/D \in \mathbb{P}_m$. where \mathbb{P}_k = denotes the cone of $k \times k$ real symmetric positive semidefinite matrices.

Let

$$M := \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

where $A = A_{m \times m}$, $B = B_{m \times n}$, $C = C_{n \times m}$, and $D = D_{n \times n}$. Assuming D is invertible, the *Schur complement* of D in M is

$$M/D := A - BD^{-1}C.$$

Important properties:

2 $M \in \mathbb{P}_{n+m}$ if and only if $D \in \mathbb{P}_n$ and $M/D \in \mathbb{P}_m$. where \mathbb{P}_k = denotes the cone of $k \times k$ real symmetric positive semidefinite matrices.

Proof:

$$M = \begin{pmatrix} I_m & BD^{-1} \\ 0 & I_n \end{pmatrix} \begin{pmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} I_m & 0 \\ D^{-1}C & I_n \end{pmatrix}.$$

 \bullet Conditional distribution: if $A\cup B$ is a partition of $\{1,\ldots,p\},$ then

$$X_A|X_B = x_B \sim N(\mu_{A|B}, \Sigma_{A|B}),$$

 \bullet Conditional distribution: if $A\cup B$ is a partition of $\{1,\ldots,p\},$ then

$$X_A|X_B = x_B \sim N(\mu_{A|B}, \Sigma_{A|B}),$$

with

$$\mu_{A|B} := \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B),$$

and

$$\Sigma_{A|B} := \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}.$$

 \bullet Conditional distribution: if $A\cup B$ is a partition of $\{1,\ldots,p\},$ then

$$X_A|X_B = x_B \sim N(\mu_{A|B}, \Sigma_{A|B}),$$

with

$$\mu_{A|B} := \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B),$$

and

$$\Sigma_{A|B} := \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}.$$

• Marginals: to obtain the joint distribution of (X_i, X_j) , note that $(X_i, X_j)^T = B(X_1, \dots, X_p)^T$

where

 \bullet Conditional distribution: if $A\cup B$ is a partition of $\{1,\ldots,p\},$ then

$$X_A|X_B = x_B \sim N(\mu_{A|B}, \Sigma_{A|B}),$$

with

$$\mu_{A|B} := \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B),$$

and

$$\Sigma_{A|B} := \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}.$$

• Marginals: to obtain the joint distribution of (X_i,X_j) , note that $(X_i,X_j)^T=B(X_1,\ldots,X_p)^T$

where

$$B = \begin{pmatrix} I_{2\times 2} & \mathbf{0}_{2\times (p-2)} \end{pmatrix} \in \mathbb{R}^{2\times p}.$$

 \bullet Conditional distribution: if $A\cup B$ is a partition of $\{1,\ldots,p\},$ then

$$X_A|X_B = x_B \sim N(\mu_{A|B}, \Sigma_{A|B}),$$

with

$$\mu_{A|B} := \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B),$$

and

$$\Sigma_{A|B} := \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}.$$

• Marginals: to obtain the joint distribution of (X_i, X_j) , note that $(X_i, X_j)^T = B(X_1, \dots, X_p)^T$

where

$$B = \begin{pmatrix} I_{2\times 2} & \mathbf{0}_{2\times (p-2)} \end{pmatrix} \in \mathbb{R}^{2\times p}.$$

Therefore

$$(X_i, X_j)^T \sim N(B\mu, B\Sigma B^T),$$

and

$$B\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \qquad B\Sigma B^T = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}.$$

5/13

Now, suppose

$$X \sim N(\mu, \Sigma)$$

with $\mu \in \mathbb{R}^p$ and $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ psd.

Now, suppose

 $X \sim N(\mu, \Sigma)$

with $\mu \in \mathbb{R}^p$ and $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ psd. Claim:

Now, suppose

 $X \sim N(\mu, \Sigma)$

with $\mu \in \mathbb{R}^p$ and $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ psd. Claim:

•
$$X_i \perp \perp X_j$$
 iff $\sigma_{ij} = 0$.
• $X_i \perp \perp X_j \mid \text{rest iff } (\Sigma^{-1})_{ij} = 0$.
Proof of (1):

$$X_i \perp \!\!\!\perp X_j \Leftrightarrow X_i | X_j = x_j \stackrel{\mathcal{L}}{=} X_i \quad \forall x_j.$$

Now, suppose

$$X \sim N(\mu, \Sigma)$$

with $\mu \in \mathbb{R}^p$ and $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ psd. Claim:

•
$$X_i \perp \perp X_j$$
 iff $\sigma_{ij} = 0$.
• $X_i \perp \perp X_j \mid \text{rest iff } (\Sigma^{-1})_{ij} = 0$.
Proof of (1):

$$X_i \perp \!\!\!\perp X_j \Leftrightarrow X_i | X_j = x_j \stackrel{\mathcal{L}}{=} X_i \quad \forall x_j.$$

Now

$$X_i | X_j = x_j \sim N\left(\mu_i + \frac{\sigma_{ii}}{\sigma_{jj}}\rho(x_j - \mu_j), (1 - \rho^2)\sigma_{ii}^2\right),$$

where $\rho = \frac{\sigma_{ij}}{\sigma_{ii}\sigma_{jj}}$ is the correlation coefficient between X_i and X_j .

Now, suppose

$$X \sim N(\mu, \Sigma)$$

with $\mu \in \mathbb{R}^p$ and $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ psd. Claim:

•
$$X_i \perp \perp X_j$$
 iff $\sigma_{ij} = 0$.
• $X_i \perp \perp X_j \mid \text{rest iff } (\Sigma^{-1})_{ij} = 0$.
Proof of (1):

$$X_i \perp \!\!\!\perp X_j \Leftrightarrow X_i | X_j = x_j \stackrel{\mathcal{L}}{=} X_i \quad \forall x_j.$$

Now

$$X_i | X_j = x_j \sim N\left(\mu_i + \frac{\sigma_{ii}}{\sigma_{jj}}\rho(x_j - \mu_j), (1 - \rho^2)\sigma_{ii}^2\right),$$

where $\rho = \frac{\sigma_{ij}}{\sigma_{ii}\sigma_{jj}}$ is the correlation coefficient between X_i and X_j . Therefore $X_i \perp \!\!\perp X_j$ iff $\rho = 0$ iff $\sigma_{ij} = 0$.

Proof of (2): Without loss of generality, assume (i, j) = (1, 2). Write μ, Σ in block form according to the partition $A = \{1, 2\}, B = \{3, \dots, p\}$:

$$\mu = (\mu_A, \mu_B)^T, \qquad \Sigma = \begin{pmatrix} \Sigma_{AA} & \Sigma_{AB} \\ \Sigma_{BA} & \Sigma_{BB} \end{pmatrix}$$

Proof of (2): Without loss of generality, assume (i, j) = (1, 2). Write μ, Σ in block form according to the partition $A = \{1, 2\}, B = \{3, \dots, p\}$:

$$\mu = (\mu_A, \mu_B)^T, \qquad \Sigma = \begin{pmatrix} \Sigma_{AA} & \Sigma_{AB} \\ \Sigma_{BA} & \Sigma_{BB} \end{pmatrix}$$

Now

$$(X_1, X_2)^T \mid \mathsf{rest} = x_B \sim N(\mu_{A|B}, \Sigma_{A|B}),$$

where

$$\mu_{A|B} := \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B),$$

and

$$\Sigma_{A|B} := \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}$$

Proof of (2): Without loss of generality, assume (i, j) = (1, 2). Write μ, Σ in block form according to the partition $A = \{1, 2\}, B = \{3, \dots, p\}$:

$$\mu = (\mu_A, \mu_B)^T, \qquad \Sigma = \begin{pmatrix} \Sigma_{AA} & \Sigma_{AB} \\ \Sigma_{BA} & \Sigma_{BB} \end{pmatrix}$$

Now

$$(X_1, X_2)^T \mid \mathsf{rest} = x_B \sim N(\mu_{A|B}, \Sigma_{A|B}),$$

where

$$\mu_{A|B} := \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B),$$

and

$$\Sigma_{A|B} := \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}$$

By part (1), $X_1 \perp \perp X_2 \mid \text{rest iff } (\Sigma_{A|B})_{12} = 0.$

Computing the inverse of a block matrix:

9.1.3 The Inverse

The inverse can be expressed as by the use of

$$\mathbf{C}_{1} = \mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{A}_{21}$$
(399)

$$\mathbf{C}_2 = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$$
(400)

 \mathbf{as}

$$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{C}_{1}^{-1} & | & -\mathbf{A}_{11}^{-1}\mathbf{A}_{12}\mathbf{C}_{2}^{-1} \\ -\mathbf{C}_{2}^{-1}\mathbf{A}_{21}\mathbf{A}_{11}^{-1} & | & \mathbf{C}_{2}^{-1} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{A}_{11}^{-1} + \mathbf{A}_{11}^{-1}\mathbf{A}_{12}\mathbf{C}_{2}^{-1}\mathbf{A}_{21}\mathbf{A}_{11}^{-1} & | & -\mathbf{C}_{1}^{-1}\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \\ \hline -\mathbf{A}_{22}^{-1}\mathbf{A}_{21}\mathbf{C}_{1}^{-1} & | & \mathbf{A}_{22}^{-1} + \mathbf{A}_{22}^{-1}\mathbf{A}_{21}\mathbf{C}_{1}^{-1}\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \end{bmatrix}$$

Ref.: Petersen and Pedersen, The matrix cookbook.

Computing the inverse of a block matrix:

9.1.3 The Inverse

The inverse can be expressed as by the use of

$$\mathbf{C}_{1} = \mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{A}_{21}$$
(399)

$$\mathbf{C}_2 = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \tag{400}$$

 \mathbf{as}

$$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{C}_{1}^{-1} & | & -\mathbf{A}_{11}^{-1}\mathbf{A}_{12}\mathbf{C}_{2}^{-1} \\ -\mathbf{C}_{2}^{-1}\mathbf{A}_{21}\mathbf{A}_{11}^{-1} & | & \mathbf{C}_{2}^{-1} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{A}_{11}^{-1} + \mathbf{A}_{11}^{-1}\mathbf{A}_{12}\mathbf{C}_{2}^{-1}\mathbf{A}_{21}\mathbf{A}_{11}^{-1} & | & -\mathbf{C}_{1}^{-1}\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \\ \hline -\mathbf{A}_{22}^{-1}\mathbf{A}_{21}\mathbf{C}_{1}^{-1} & | & \mathbf{A}_{22}^{-1} + \mathbf{A}_{22}^{-1}\mathbf{A}_{21}\mathbf{C}_{1}^{-1}\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \end{bmatrix}$$

Ref.: Petersen and Pedersen, The matrix cookbook.

It follows that

$$\Sigma_{A|B}^{-1} = (\Sigma^{-1})_{1:2,1:2}$$

We have shown

$$\Sigma_{A|B}^{-1} = (\Sigma^{-1})_{1:2,1:2}.$$

We have shown

$$\Sigma_{A|B}^{-1} = (\Sigma^{-1})_{1:2,1:2}.$$

Also, we have

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix}^{-1} = \frac{1}{ac - b^2} \begin{pmatrix} c & -b \\ -b & a \end{pmatrix}.$$

We have shown

$$\Sigma_{A|B}^{-1} = (\Sigma^{-1})_{1:2,1:2}.$$

Also, we have

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix}^{-1} = \frac{1}{ac - b^2} \begin{pmatrix} c & -b \\ -b & a \end{pmatrix}.$$

Finally,

$$(\Sigma_{A|B})_{12} = 0 \Leftrightarrow (\Sigma_{A|B}^{-1})_{12} = 0 \Leftrightarrow (\Sigma^{-1})_{12} = 0.$$

We have shown

$$\Sigma_{A|B}^{-1} = (\Sigma^{-1})_{1:2,1:2}.$$

Also, we have

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix}^{-1} = \frac{1}{ac - b^2} \begin{pmatrix} c & -b \\ -b & a \end{pmatrix}.$$

Finally,

$$(\Sigma_{A|B})_{12} = 0 \Leftrightarrow (\Sigma_{A|B}^{-1})_{12} = 0 \Leftrightarrow (\Sigma^{-1})_{12} = 0.$$

Therefore, $X_i \perp \!\!\!\perp X_j \mid \text{rest iff } (\Sigma^{-1})_{ij} = 0.$

We have shown that when $X \sim N(\mu, \Sigma)$,

We have shown that when $X \sim N(\mu, \Sigma)$,

$$I X_i \perp \perp X_j \text{ iff } \Sigma_{ij} = 0.$$

$$X_i \perp X_j \mid \text{rest iff } (\Sigma^{-1})_{ij} = 0.$$

• To discover the conditional structure of X, we need to estimate the structure of zeros of the precision matrix $\Omega = \Sigma^{-1}$.

We have shown that when $X \sim N(\mu, \Sigma)$,

$$I X_i \perp \!\!\!\perp X_j \text{ iff } \Sigma_{ij} = 0.$$

2
$$X_i \perp \perp X_j \mid \text{rest iff } (\Sigma^{-1})_{ij} = 0.$$

• To discover the conditional structure of X, we need to estimate the structure of zeros of the precision matrix $\Omega = \Sigma^{-1}$.

• We will proceed in a way that is similar to the lasso.

We have shown that when $X \sim N(\mu, \Sigma)$,

$$I X_i \perp \!\!\!\perp X_j \text{ iff } \Sigma_{ij} = 0.$$

2
$$X_i \perp \perp X_j \mid \text{rest iff } (\Sigma^{-1})_{ij} = 0.$$

• To discover the conditional structure of X, we need to estimate the structure of zeros of the precision matrix $\Omega = \Sigma^{-1}$.

• We will proceed in a way that is similar to the lasso.

• To discover the conditional structure of X, we need to estimate the structure of zeros of the precision matrix $\Omega = \Sigma^{-1}$.

We have shown that when $X \sim N(\mu, \Sigma)$,

$$I X_i \perp \!\!\!\perp X_j \text{ iff } \Sigma_{ij} = 0.$$

2
$$X_i \perp \perp X_j \mid \text{rest iff } (\Sigma^{-1})_{ij} = 0.$$

• To discover the conditional structure of X, we need to estimate the structure of zeros of the precision matrix $\Omega = \Sigma^{-1}$.

• We will proceed in a way that is similar to the lasso.

• To discover the conditional structure of X, we need to estimate the structure of zeros of the precision matrix $\Omega = \Sigma^{-1}$.

• Suppose $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^p$ are iid observations of X. The associated **log-likelihood** of (μ, Σ) is given by

$$l(\mu, \Sigma) := -\frac{n}{2} \log \det \Sigma - \frac{1}{2} \sum_{i=1}^{n} (x^{(i)} - \mu)^T \Sigma^{-1} (x^{(i)} - \mu) - \frac{np}{2} \log(2\pi).$$

We have shown that when $X \sim N(\mu, \Sigma)$,

$$I X_i \perp \!\!\!\perp X_j \text{ iff } \Sigma_{ij} = 0.$$

2
$$X_i \perp \!\!\!\perp X_j \mid \text{rest iff } (\Sigma^{-1})_{ij} = 0.$$

• To discover the conditional structure of X, we need to estimate the structure of zeros of the precision matrix $\Omega = \Sigma^{-1}$.

• We will proceed in a way that is similar to the lasso.

• To discover the conditional structure of X, we need to estimate the structure of zeros of the precision matrix $\Omega = \Sigma^{-1}$.

• Suppose $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^p$ are iid observations of X. The associated **log-likelihood** of (μ, Σ) is given by

$$l(\mu, \Sigma) := -\frac{n}{2} \log \det \Sigma - \frac{1}{2} \sum_{i=1}^{n} (x^{(i)} - \mu)^T \Sigma^{-1} (x^{(i)} - \mu) - \frac{np}{2} \log(2\pi).$$

Classical result: the MLE of (μ,Σ) is given by

$$\hat{\mu} := \frac{1}{n} \sum_{i=1}^{n} x^{(i)}, \qquad S := \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \hat{\mu}) (x^{(i)} - \hat{\mu})^{T}.$$

Estimating the CI structure of a GGM (cont.)

• Using $\hat{\mu}$ and $\widehat{\Sigma}$, we can conveniently rewrite the log-likelihood as:

$$l(\mu, \Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{n}{2} \operatorname{Tr}(S\Sigma^{-1}) - \frac{np}{2} \log(2\pi) -\frac{n}{2} \operatorname{Tr}(\Sigma^{-1}(\hat{\mu} - \mu)(\hat{\mu} - \mu)^T).$$

(use the identity $x^T A x = \operatorname{Tr}(A x x^T)$.

Estimating the CI structure of a GGM (cont.)

• Using $\hat{\mu}$ and $\widehat{\Sigma}$, we can conveniently rewrite the log-likelihood as:

$$l(\mu, \Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{n}{2} \operatorname{Tr}(S\Sigma^{-1}) - \frac{np}{2} \log(2\pi) -\frac{n}{2} \operatorname{Tr}(\Sigma^{-1}(\hat{\mu} - \mu)(\hat{\mu} - \mu)^T).$$

(use the identity $x^T A x = \operatorname{Tr}(A x x^T)$.

• Note that the last term is minimized when $\mu = \hat{\mu}$ (independently of Σ) since

$$Tr(\Sigma^{-1}(\hat{\mu}-\mu)(\hat{\mu}-\mu)^{T}) = (\hat{\mu}-\mu)^{T}\Sigma^{-1}(\hat{\mu}-\mu) \ge 0.$$

(The last inequality holds since Σ^{-1} is positive definite.)

Estimating the CI structure of a GGM (cont.)

• Using $\hat{\mu}$ and $\widehat{\Sigma}$, we can conveniently rewrite the log-likelihood as:

$$l(\mu, \Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{n}{2} \operatorname{Tr}(S\Sigma^{-1}) - \frac{np}{2} \log(2\pi) -\frac{n}{2} \operatorname{Tr}(\Sigma^{-1}(\hat{\mu} - \mu)(\hat{\mu} - \mu)^T).$$

(use the identity $x^T A x = \operatorname{Tr}(A x x^T)$.

• Note that the last term is minimized when $\mu = \hat{\mu}$ (independently of Σ) since

$$Tr(\Sigma^{-1}(\hat{\mu} - \mu)(\hat{\mu} - \mu)^{T}) = (\hat{\mu} - \mu)^{T}\Sigma^{-1}(\hat{\mu} - \mu) \ge 0.$$

(The last inequality holds since Σ^{-1} is positive definite.)

• Therefore the log-likelihood of $\Omega:=\Sigma^{-1}$ is

 $l(\Omega) \propto \log \det \Omega - \operatorname{Tr}(S\Omega)$ (up to a constant).

The Graphical Lasso (glasso) algorithm (Friedman, Hastie, Tibshirani, 2007), Banerjee et al. (2007), solves the **penalized likelihood** problem:

$$\hat{\Omega}_{\rho} = \underset{\Omega \text{ psd}}{\operatorname{argmax}} \left[\log \det \Omega - \operatorname{Tr}(S\Omega) - \rho \sum_{i,j=1}^{p} \|\Omega\|_{1} \right],$$

where $\|\Omega\|_1:=\sum_{i,j=1}^p |\Omega_{ij}|,$ and $\rho>0$ is a fixed regularization parameter.

The Graphical Lasso (glasso) algorithm (Friedman, Hastie, Tibshirani, 2007), Banerjee et al. (2007), solves the **penalized likelihood** problem:

$$\hat{\Omega}_{\rho} = \underset{\Omega \text{ psd}}{\operatorname{argmax}} \left[\log \det \Omega - \operatorname{Tr}(S\Omega) - \rho \sum_{i,j=1}^{p} \|\Omega\|_{1} \right],$$

where $\|\Omega\|_1 := \sum_{i,j=1}^p |\Omega_{ij}|$, and $\rho > 0$ is a fixed regularization parameter.

 Idea: Make a trade-off between maximizing the likelihood and having a sparse Ω.

The Graphical Lasso (glasso) algorithm (Friedman, Hastie, Tibshirani, 2007), Banerjee et al. (2007), solves the **penalized likelihood** problem:

$$\hat{\Omega}_{\rho} = \underset{\Omega \text{ psd}}{\operatorname{argmax}} \left[\log \det \Omega - \operatorname{Tr}(S\Omega) - \rho \sum_{i,j=1}^{p} \|\Omega\|_{1} \right],$$

where $\|\Omega\|_1 := \sum_{i,j=1}^p |\Omega_{ij}|$, and $\rho > 0$ is a fixed regularization parameter.

- Idea: Make a trade-off between maximizing the likelihood and having a sparse Ω .
- Just like in the lasso problem, using a 1-norm tends to introduce many zeros into Ω.

The Graphical Lasso (glasso) algorithm (Friedman, Hastie, Tibshirani, 2007), Banerjee et al. (2007), solves the **penalized likelihood** problem:

$$\hat{\Omega}_{\rho} = \underset{\Omega \text{ psd}}{\operatorname{argmax}} \left[\log \det \Omega - \operatorname{Tr}(S\Omega) - \rho \sum_{i,j=1}^{p} \|\Omega\|_{1} \right],$$

where $\|\Omega\|_1 := \sum_{i,j=1}^p |\Omega_{ij}|$, and $\rho > 0$ is a fixed regularization parameter.

- Idea: Make a trade-off between maximizing the likelihood and having a sparse Ω .
- Just like in the lasso problem, using a 1-norm tends to introduce many zeros into Ω.
- The regularization parameter ρ can be chosen by cross-validation.

The Graphical Lasso (glasso) algorithm (Friedman, Hastie, Tibshirani, 2007), Banerjee et al. (2007), solves the **penalized likelihood** problem:

$$\hat{\Omega}_{\rho} = \underset{\Omega \text{ psd}}{\operatorname{argmax}} \left[\log \det \Omega - \operatorname{Tr}(S\Omega) - \rho \sum_{i,j=1}^{p} \|\Omega\|_{1} \right],$$

where $\|\Omega\|_1 := \sum_{i,j=1}^p |\Omega_{ij}|$, and $\rho > 0$ is a fixed regularization parameter.

- Idea: Make a trade-off between maximizing the likelihood and having a sparse Ω .
- Just like in the lasso problem, using a 1-norm tends to introduce many zeros into Ω.
- The regularization parameter ρ can be chosen by cross-validation.
- The above problem can be efficiently solved for problems with up to a few thousand variables (see e.g. ESL, Algorithm 17.2).

• From the glasso solution, one infers a conditional independence graph for $X = (X_1, \ldots, X_p)$.

• From the glasso solution, one infers a conditional independence graph for $X = (X_1, \ldots, X_p)$.

 \bullet Given a graph G=(V,E) with p vertices, let

$$\mathbb{P}_G := \{ A \in \mathbb{P}_p : A_{ij} = 0 \text{ if } (i,j) \notin E \}.$$

• From the glasso solution, one infers a conditional independence graph for $X = (X_1, \ldots, X_p)$.

• Given a graph G = (V, E) with p vertices, let

$$\mathbb{P}_G := \{ A \in \mathbb{P}_p : A_{ij} = 0 \text{ if } (i,j) \notin E \}.$$

• We can now estimate the *optimal* covariance matrix with the given graph structure by solving:

$$\hat{\Sigma}_G := \operatorname*{argmax}_{\Sigma : \Omega = \Sigma^{-1} \in \mathbb{P}_G} l(\Sigma),$$

where $l(\Sigma)$ denotes the log-likelihood of Σ .

• From the glasso solution, one infers a conditional independence graph for $X = (X_1, \ldots, X_p)$.

 \bullet Given a graph G=(V,E) with p vertices, let

$$\mathbb{P}_G := \{ A \in \mathbb{P}_p : A_{ij} = 0 \text{ if } (i,j) \notin E \}.$$

• We can now estimate the *optimal* covariance matrix with the given graph structure by solving:

$$\hat{\Sigma}_G := \operatorname*{argmax}_{\Sigma \ : \ \Omega = \Sigma^{-1} \in \mathbb{P}_G} l(\Sigma),$$

where $l(\Sigma)$ denotes the log-likelihood of Σ .

• Note: Instead of maximizing the log-likelihood over all possible psd matrices as in the classical case, we restrict ourselves to the matrices having the right conditional independence structure.

• From the glasso solution, one infers a conditional independence graph for $X = (X_1, \ldots, X_p)$.

• Given a graph G = (V, E) with p vertices, let

$$\mathbb{P}_G := \{ A \in \mathbb{P}_p : A_{ij} = 0 \text{ if } (i,j) \notin E \}.$$

• We can now estimate the *optimal* covariance matrix with the given graph structure by solving:

$$\hat{\Sigma}_G := \operatorname*{argmax}_{\Sigma : \Omega = \Sigma^{-1} \in \mathbb{P}_G} l(\Sigma),$$

where $l(\Sigma)$ denotes the log-likelihood of Σ .

• Note: Instead of maximizing the log-likelihood over all possible psd matrices as in the classical case, we restrict ourselves to the matrices having the right conditional independence structure.

• The "graphical MLE" problem can be solved efficiently for up to a few thousand variables (see e.g. ESL, Algorithm 17.1).