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Recall

@ An undirected graphical model is a set of random variables
{X1,...,X,} satisfying a Markov property.
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Recall

@ An undirected graphical model is a set of random variables
{X1,...,X,} satisfying a Markov property.

o Let G=(V,E) be a graph on {1,...,p}.

@ The pairwise Markov property: X; 1l X | rest whenever
(i,7) & E.

o If the density of X = (X7,..., X)) is continuous and positive,
then

pairwise < local < global.

@ The Hammersley—Clifford theorem provides a necessary and
sufficient condition for a random vector to have a Markov
random field structure with respect to a given graph G.

We will now turn our attention to the special case of a random
vector with a multivariate Gaussian distribution.
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Recall: Multivariate Gaussian/normal distribution

Recall: X = (X4,...,X,) ~ N(i,X) where p € R? and
Y = (045) € RP*P is positive definite if

P(X € A) = S dgy L day,.

L(z-w)T
V(2m)Pdet E /
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Recall: Multivariate Gaussian/normal distribution

Recall: X = (X4,...,X,) ~ N(i,X) where p € R? and
Y = (0i;) € RP*P is positive definite if

P(X € A) = S dgy L day,.

L(z-w)T
V(2m)Pdet E /

Bivariate case:

We have
E(X) = W, COV(XZ‘,X]‘) = 04j-

If Y =c+ BX, where c € RP and B € R™*P, then
Y ~ N(c+ Bu, BEBT).

Note:  := X! is called the precision matrix or the concentration

matrix of the distribution.
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The Schur complement

Let
A B
e (3 0)

where A = Ayiim, B = Bixn, C = Cpxm, and D = Dy .
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The Schur complement

Let
A B
e (3 0)

where A = Ayiim, B = Bixn, C = Cpxm, and D = Dy .
Assuming D is invertible, the Schur complement of D in M is

M/D:=A—-BD™'C.
Important properties:

Q det M =det D -det(M/D).

Q@ MeP,,ifand only if D € P, and M/D € P,,.
where P, = denotes the cone of k x k real symmetric positive
semidefinite matrices.

Proof:

M= I,, BD™"\ ([A—BD7'C 0 I, 0
—\o0 I, 0 D)\DCc I,)°
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Multivariate Gaussian/normal distribution (cont.)

e Conditional distribution: if AU B is a partition of {1,...,p},
then

XalXp =1~ N(paB, XaB);
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Multivariate Gaussian/normal distribution (cont.)

e Conditional distribution: if AU B is a partition of {1,...,p},

then
XalXp=2p ~ N(pas, 2aB)
with
pap = pa+SapYpp(es — 1s),
and

Sap =244 — SaBY 5 B4
e Marginals: to obtain the joint distribution of (X;, X;), note that
(Xi, X;))" = B(X1,...,X,)"

where
B = (Inxz Ogx(p-2)) € R¥*P.
Therefore
(Xi, X;)" ~ N(Bu, BEBT),
and

Bu = H1 BypT — (911 912}
w2 )’ 021 022
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Multivariate Gaussian/normal distribution (cont.)

Now, suppose
X ~ N(u, %)

with 11 € RP and ¥ = (0y5) € RP*P psd.
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Multivariate Gaussian/normal distribution (cont.)

Now, suppose
X ~ N(p, %)
with ;2 € RP and ¥ = (0y;) € RP*P psd.
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@ X; I X, iffo;; = 0.
Q X, 1 X; | rest iff (2_1)1‘]‘ = 0.
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Multivariate Gaussian/normal distribution (cont.)
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X ~ N(p, %)
with ;2 € RP and ¥ = (0y;) € RP*P psd.
Claim:
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Multivariate Gaussian/normal distribution (cont.)

Now, suppose
X ~ N(M? Z)

with ;2 € RP and ¥ = (0y;) € RP*P psd.
Claim:

Q@ X; L X;iffoy; =0.

Q X, 1 X; | rest iff (2_1)1‘]‘ = 0.
Proof of (1):

X; 1L Xj =4 XZ“X]' =Zj é X, V.%'j.

Now

o
XilXj =wj~ N (Mz‘ + —plaj—py) (1= pz)%%) )
73

where p = —7_ is the correlation coefficient between X; and X;.
1]
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Multivariate Gaussian/normal distribution (cont.)

Now, suppose
X ~ N(M? Z)
with 11 € RP and ¥ = (0y5) € RP*P psd.
Claim:
Q@ X, L X, iffo;; =0.
Q X, 1L Xj ‘ rest iff (2_1)1‘]‘ = 0.
Proof of (1):
L
X; 1L Xj =4 XZ“X]' =x; = X, V.%'j.
Now
p
Xi|X; =a; ~N (Mi + ey — ) (1= p2)03¢> :
33
where p = —7_ is the correlation coefficient between X; and X;.
1103

Therefore Xz AL Xj iff p = 0 iff Oij = 0.
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Multivariate Gaussian/normal distribution (cont.)

Proof of (2): Without loss of generality, assume (7, j) = (1, 2).
Write 11, Y in block form according to the partition
A={1,2},B=1{3,...,p}

by by

T AA AB
= ) ) Y= .
w=(pa, 1B) <ZBA EBB)
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Multivariate Gaussian/normal distribution (cont.)
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A={1,2},B=1{3,...,p}
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Multivariate Gaussian/normal distribution (cont.)

Proof of (2): Without loss of generality, assume (7, j) = (1, 2).
Write 11, Y in block form according to the partition
A={1,2},B=1{3,...,p}

Saa S
= (pa, up)", E=<AA AB)-

Ypa XBB
Now
(X1,X2)" | rest =2 ~ N(pap: Sa),
where
pap = pa+ SapEpp(@s — 1),
and

Sap =244 — SapS55EB4A
By part (1), Xy 1L Xo | rest iff (¥ 45)12 = 0.
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The inverse of a block matrix

Computing the inverse of a block matrix:

9.1.3 The Inverse

The inverse can be expressed as by the use of

Ci = A —ApAyAy (399)
Co = Apn—AyAjlAp (400)
* -1 -1 -1 -1
Ao [ Ay —C7 A AT | c;!
_ [ AL AL ALCT AL AT ‘ —CT7'A AL j|
Ay AxCrT [ AS + A ANCTTARAY

Ref.: Petersen and Pedersen, The matrix cookbook.
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The inverse of a block matrix

Computing the inverse of a block matrix:

9.1.3 The Inverse

The inverse can be expressed as by the use of

Ci = A —ApAyAy (399)
Co = Apn—AyAjlAp (400)
* -1 -1 -1 -1
Ao [ Ay —C7 A AT | c;!
_ [ AL AL ALCT AL AT ‘ —CT7'A AL j|
Ay AxCrT [ AS + A ANCTTARAY

Ref.: Petersen and Pedersen, The matrix cookbook.

It follows that
EZ‘IB = (S 12122
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Multivariate Gaussian/normal distribution (cont.)

We have shown
EA?RB = (S N12,12.
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Multivariate Gaussian/normal distribution (cont.)

We have shown

Also, we have
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Also, we have

Finally,
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Multivariate Gaussian/normal distribution (cont.)

We have shown

Also, we have

Finally,

(Cap)iz=0& (2,)=0& (X1 =0.
| AlB

Therefore, X; 1L X; | rest iff (X71);; = 0.

O
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Estimating the conditional independence structure of a GGM

We have shown that when X ~ N(u,X),
Q X; 1L X;iff ¥; =0.
Q Xz 1 Xj ‘ rest iff (Eil)ij = 0.
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Estimating the conditional independence structure of a GGM

We have shown that when X ~ N(u,X),

Q@ X, Il X;iff £, =0.

Q X; 1L Xj ‘ rest iff (Eil)ij = 0.
@ To discover the conditional structure of X, we need to estimate
the structure of zeros of the precision matrix = X1,
@ We will proceed in a way that is similar to the lasso.
@ To discover the conditional structure of X, we need to estimate
the structure of zeros of the precision matrix ) = X1,
o Suppose 1), ... z(") ¢ RP are iid observations of X. The
associated log-likelihood of (1, X)) is given by

n

n 1 ; 1, (i n
I, X) := 5 log det 2—5 Z(x(’)—u)TE ! )—,u)—Tp log(2m).
i=1
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Estimating the conditional independence structure of a GGM

We have shown that when X ~ N(u,X),

Q@ X, Il X;iff £, =0.

Q X; 1L Xj ‘ rest iff (Eil)ij = 0.
@ To discover the conditional structure of X, we need to estimate
the structure of zeros of the precision matrix = X1,
@ We will proceed in a way that is similar to the lasso.
@ To discover the conditional structure of X, we need to estimate
the structure of zeros of the precision matrix ) = X1,
o Suppose 1), ... z(") ¢ RP are iid observations of X. The
associated log-likelihood of (1, X)) is given by

n

I, X) := —% log det E—% ;(x(’)—u)Tﬁl(x(’)—u)—T;p log(2m).
Classical result: the MLE of (i, X) is given by

n

1 1 D) (@) n
,u::EZx(), S:zﬁz(:v()—u)(w()—u)T.
= = 10/13



Estimating the CI structure of a GGM (cont.)

e Using /i and &, we can conveniently rewrite the log-likelihood as:

(1,3 = — glog det ¥ — gmsz—l) - % log(27)

n

— 5 T (= w) (= m)").

(use the identity #7 Az = Tr(AzzT).
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Estimating the CI structure of a GGM (cont.)
e Using /i and &, we can conveniently rewrite the log-likelihood as:

(1,3 = — glog det ¥ — gmsz—l) - % log(27)

— ST = ) (i - w)").

(use the identity #7 Az = Tr(AzzT).
@ Note that the last term is minimized when y = /i (independently
of X) since

Te(S (= ) (= 1)T) = (7o = )= (= 1) > 0.

(The last inequality holds since X! is positive definite.)
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Estimating the CI structure of a GGM (cont.)
e Using /i and &, we can conveniently rewrite the log-likelihood as:

(1,3 = — glog det ¥ — gmsz—l) - % log(27)

— ST = ) (i - w)").

(use the identity #7 Az = Tr(AzzT).
@ Note that the last term is minimized when y = /i (independently
of X) since

Te(S (= ) (= 1)T) = (7o = )= (= 1) > 0.

(The last inequality holds since X! is positive definite.)
@ Therefore the log-likelihood of Q := %71 is

1(Q) o logdet Q — Tr(S9Q) (up to a constant).

11/13



The Graphical Lasso

The Graphical Lasso (glasso) algorithm (Friedman, Hastie,
Tibshirani, 2007), Banerjee et al. (2007), solves the penalized
likelihood problem:

Q, = argmax |logdet Q — Tr(SQ) — p Z 1211 ,
Q psd ij—1

where ||Q|]; := szl |€25], and p > 0 is a fixed regularization
parameter.
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The Graphical Lasso

The Graphical Lasso (glasso) algorithm (Friedman, Hastie,
Tibshirani, 2007), Banerjee et al. (2007), solves the penalized
likelihood problem:

Q, = argmax |logdet Q — Tr(SQ) — p Z 1211 ,
Q psd ij—1

where ||Q|]; := f,j:l |€25], and p > 0 is a fixed regularization
parameter.
o Idea: Make a trade-off between maximizing the likelihood and
having a sparse (2.
@ Just like in the lasso problem, using a 1-norm tends to
introduce many zeros into €.
@ The regularization parameter p can be chosen by
cross-validation.
@ The above problem can be efficiently solved for problems with
up to a few thousand variables (see e.g. ESL, Algorithm 17.2).
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MLE estimation of a GGM

@ From the glasso solution, one infers a conditional
independence graph for X = (X1,...,X)).
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MLE estimation of a GGM

@ From the glasso solution, one infers a conditional
independence graph for X = (X1,...,X)).

e Given a graph G = (V, E)) with p vertices, let
P = {AGPpiAijIOif(’i,j) &E}

@ We can now estimate the optimal covariance matrix with the
given graph structure by solving:

So:= argmax (%),
¥ Q=%"1ePq

where [(X) denotes the log-likelihood of X.

@ Note: Instead of maximizing the log-likelihood over all possible
psd matrices as in the classical case, we restrict ourselves to the
matrices having the right conditional independence structure.

@ The “graphical MLE"” problem can be solved efficiently for up to a
few thousand variables (see e.g. ESL, Algorithm 17.1).
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