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Recall

An undirected graphical model is a set of random variables

{X1, . . . , Xp} satisfying a Markov property.

Let G = (V,E) be a graph on {1, . . . , p}.
The pairwise Markov property: Xi ⊥⊥ Xj | rest whenever
(i, j) 6∈ E.
If the density of X = (X1, . . . , Xp) is continuous and positive,

then

pairwise⇔ local⇔ global.

The Hammersley�Cli�ord theorem provides a necessary and

su�cient condition for a random vector to have a Markov

random �eld structure with respect to a given graph G.

We will now turn our attention to the special case of a random

vector with a multivariate Gaussian distribution.
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Recall: Multivariate Gaussian/normal distribution

Recall: X = (X1, . . . , Xp) ∼ N(µ,Σ) where µ ∈ Rp and

Σ = (σij) ∈ Rp×p is positive de�nite if

P (X ∈ A) =
1√

(2π)p det Σ

∫
A

e−
1
2 (x−µ)T Σ−1(x−µ) dx1 . . . dxp.

Bivariate case:

We have
E(X) = µ, Cov(Xi, Xj) = σij .

If Y = c+BX, where c ∈ Rp and B ∈ Rm×p, then

Y ∼ N(c+Bµ,BΣBT ).

Note: Ω := Σ−1 is called the precision matrix or the concentration

matrix of the distribution.
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The Schur complement

Let

M :=

(
A B
C D

)
where A = Am×m, B = Bm×n, C = Cn×m, and D = Dn×n.

Assuming D is invertible, the Schur complement of D in M is

M/D := A−BD−1C.

Important properties:

1 detM = detD · det(M/D).

2 M ∈ Pn+m if and only if D ∈ Pn and M/D ∈ Pm.
where Pk = denotes the cone of k × k real symmetric positive

semide�nite matrices.

Proof:

M =

(
Im BD−1

0 In

)(
A−BD−1C 0

0 D

)(
Im 0

D−1C In

)
.
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Multivariate Gaussian/normal distribution (cont.)

Conditional distribution: if A ∪B is a partition of {1, . . . , p},
then

XA|XB = xB ∼ N(µA|B,ΣA|B),

with

µA|B := µA + ΣABΣ−1
BB(xB − µB),

and

ΣA|B := ΣAA − ΣABΣ−1
BBΣBA.

Marginals: to obtain the joint distribution of (Xi, Xj), note that

(Xi, Xj)
T = B(X1, . . . , Xp)

T

where

B =
(
I2×2 02×(p−2)

)
∈ R2×p.

Therefore

(Xi, Xj)
T ∼ N(Bµ,BΣBT ),

and

Bµ =

(
µ1

µ2

)
, BΣBT =

(
σ11 σ12

σ21 σ22

)
.
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Multivariate Gaussian/normal distribution (cont.)

Now, suppose

X ∼ N(µ,Σ)

with µ ∈ Rp and Σ = (σij) ∈ Rp×p psd.

Claim:

1 Xi ⊥⊥ Xj i� σij = 0.

2 Xi ⊥⊥ Xj | rest i� (Σ−1)ij = 0.

Proof of (1):

Xi ⊥⊥ Xj ⇔ Xi|Xj = xj
L
= Xi ∀xj .

Now

Xi|Xj = xj ∼ N
(
µi +

σii
σjj

ρ(xj − µj), (1− ρ2)σ2
ii

)
,

where ρ =
σij

σiiσjj
is the correlation coe�cient between Xi and Xj .

Therefore Xi ⊥⊥ Xj i� ρ = 0 i� σij = 0.
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Multivariate Gaussian/normal distribution (cont.)

Proof of (2): Without loss of generality, assume (i, j) = (1, 2).
Write µ,Σ in block form according to the partition

A = {1, 2}, B = {3, . . . , p}:

µ = (µA, µB)T , Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
.

Now

(X1, X2)T | rest = xB ∼ N(µA|B,ΣA|B),

where

µA|B := µA + ΣABΣ−1
BB(xB − µB),

and

ΣA|B := ΣAA − ΣABΣ−1
BBΣBA

By part (1), X1 ⊥⊥ X2 | rest i� (ΣA|B)12 = 0.

7/13



Multivariate Gaussian/normal distribution (cont.)

Proof of (2): Without loss of generality, assume (i, j) = (1, 2).
Write µ,Σ in block form according to the partition

A = {1, 2}, B = {3, . . . , p}:

µ = (µA, µB)T , Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
.

Now

(X1, X2)T | rest = xB ∼ N(µA|B,ΣA|B),

where

µA|B := µA + ΣABΣ−1
BB(xB − µB),

and

ΣA|B := ΣAA − ΣABΣ−1
BBΣBA

By part (1), X1 ⊥⊥ X2 | rest i� (ΣA|B)12 = 0.

7/13



Multivariate Gaussian/normal distribution (cont.)

Proof of (2): Without loss of generality, assume (i, j) = (1, 2).
Write µ,Σ in block form according to the partition

A = {1, 2}, B = {3, . . . , p}:

µ = (µA, µB)T , Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
.

Now

(X1, X2)T | rest = xB ∼ N(µA|B,ΣA|B),

where

µA|B := µA + ΣABΣ−1
BB(xB − µB),

and

ΣA|B := ΣAA − ΣABΣ−1
BBΣBA

By part (1), X1 ⊥⊥ X2 | rest i� (ΣA|B)12 = 0.

7/13



The inverse of a block matrix

Computing the inverse of a block matrix:

Ref.: Petersen and Pedersen, The matrix cookbook.

It follows that

Σ−1
A|B = (Σ−1)1:2,1:2
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Multivariate Gaussian/normal distribution (cont.)

We have shown

Σ−1
A|B = (Σ−1)1:2,1:2.

Also, we have (
a b
b c

)−1

=
1

ac− b2

(
c −b
−b a

)
.

Finally,

(ΣA|B)12 = 0⇔ (Σ−1
A|B)12 = 0⇔ (Σ−1)12 = 0.

Therefore, Xi ⊥⊥ Xj | rest i� (Σ−1)ij = 0.
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Estimating the conditional independence structure of a GGM

We have shown that when X ∼ N(µ,Σ),
1 Xi ⊥⊥ Xj i� Σij = 0.
2 Xi ⊥⊥ Xj | rest i� (Σ−1)ij = 0.

To discover the conditional structure of X, we need to estimate

the structure of zeros of the precision matrix Ω = Σ−1.

We will proceed in a way that is similar to the lasso.

To discover the conditional structure of X, we need to estimate

the structure of zeros of the precision matrix Ω = Σ−1.

Suppose x(1), . . . , x(n) ∈ Rp are iid observations of X. The

associated log-likelihood of (µ,Σ) is given by

l(µ,Σ) := −n
2

log det Σ−1

2

n∑
i=1

(x(i)−µ)TΣ−1(x(i)−µ)−np
2

log(2π).

Classical result: the MLE of (µ,Σ) is given by

µ̂ :=
1

n

n∑
i=1

x(i), S :=
1

n

n∑
i=1

(x(i) − µ̂)(x(i) − µ̂)T .
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Estimating the CI structure of a GGM (cont.)

Using µ̂ and Σ̂, we can conveniently rewrite the log-likelihood as:

l(µ,Σ) =− n

2
log det Σ− n

2
Tr(SΣ−1)− np

2
log(2π)

− n

2
Tr(Σ−1(µ̂− µ)(µ̂− µ)T ).

(use the identity xTAx = Tr(AxxT ).

Note that the last term is minimized when µ = µ̂ (independently

of Σ) since

Tr(Σ−1(µ̂− µ)(µ̂− µ)T ) = (µ̂− µ)TΣ−1(µ̂− µ) ≥ 0.

(The last inequality holds since Σ−1 is positive de�nite.)

Therefore the log-likelihood of Ω := Σ−1 is

l(Ω) ∝ log det Ω− Tr(SΩ) (up to a constant).
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The Graphical Lasso

The Graphical Lasso (glasso) algorithm (Friedman, Hastie,

Tibshirani, 2007), Banerjee et al. (2007), solves the penalized
likelihood problem:

Ω̂ρ = argmax
Ω psd

log det Ω− Tr(SΩ)− ρ
p∑

i,j=1

‖Ω‖1

 ,
where ‖Ω‖1 :=

∑p
i,j=1 |Ωij |, and ρ > 0 is a �xed regularization

parameter.

Idea: Make a trade-o� between maximizing the likelihood and

having a sparse Ω.

Just like in the lasso problem, using a 1-norm tends to

introduce many zeros into Ω.

The regularization parameter ρ can be chosen by

cross-validation.

The above problem can be e�ciently solved for problems with

up to a few thousand variables (see e.g. ESL, Algorithm 17.2).
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MLE estimation of a GGM

From the glasso solution, one infers a conditional
independence graph for X = (X1, . . . , Xp).

Given a graph G = (V,E) with p vertices, let

PG := {A ∈ Pp : Aij = 0 if (i, j) 6∈ E}.

We can now estimate the optimal covariance matrix with the

given graph structure by solving:

Σ̂G := argmax
Σ : Ω=Σ−1∈PG

l(Σ),

where l(Σ) denotes the log-likelihood of Σ.

Note: Instead of maximizing the log-likelihood over all possible

psd matrices as in the classical case, we restrict ourselves to the

matrices having the right conditional independence structure.

The �graphical MLE� problem can be solved e�ciently for up to a

few thousand variables (see e.g. ESL, Algorithm 17.1).
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