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Estimating the conditional independence structure of a GGM

During the last lecture, we have shown that when X ∼ N(µ,Σ),

1 Xi ⊥⊥ Xj i� Σij = 0.

2 Xi ⊥⊥ Xj | rest i� (Σ−1)ij = 0.

To discover the conditional structure of X, we need to estimate
the structure of zeros of the precision matrix Ω = Σ−1.

We will proceed in a way that is similar to the lasso.
Suppose x(1), . . . , x(n) ∈ Rp are iid observations of X. The

associated log-likelihood of (µ,Σ) is given by

l(µ,Σ) := −n
2

log det Σ−1

2

n∑
i=1

(x(i)−µ)TΣ−1(x(i)−µ)−np
2

log(2π).

Classical result: the MLE of (µ,Σ) is given by

µ̂ :=
1

n

n∑
i=1

x(i), S :=
1

n

n∑
i=1

(x(i) − µ̂)(x(i) − µ̂)T .
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Estimating the CI structure of a GGM (cont.)

Using µ̂ and Σ̂, we can conveniently rewrite the log-likelihood as:

l(µ,Σ) =− n

2
log det Σ− n

2
Tr(SΣ−1)− np

2
log(2π)

− n

2
Tr(Σ−1(µ̂− µ)(µ̂− µ)T ).

(use the identity xTAx = Tr(AxxT ).

Note that the last term is minimized when µ = µ̂ (independently
of Σ) since

Tr(Σ−1(µ̂− µ)(µ̂− µ)T ) = (µ̂− µ)TΣ−1(µ̂− µ) ≥ 0.

(The last inequality holds since Σ−1 is positive de�nite.)

Therefore the log-likelihood of Ω := Σ−1 is

l(Ω) ∝ log det Ω− Tr(SΩ) (up to a constant).
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The Graphical Lasso

The Graphical Lasso (glasso) algorithm (Friedman, Hastie,
Tibshirani, 2007), Banerjee et al. (2007), solves the penalized
likelihood problem:

Ω̂ρ = argmax
Ω psd

log det Ω− Tr(SΩ)− ρ
p∑

i,j=1

‖Ω‖1

 ,
where ‖Ω‖1 :=

∑p
i,j=1 |Ωij |, and ρ > 0 is a �xed regularization

parameter.

Idea: Make a trade-o� between maximizing the likelihood and
having a sparse Ω.

Just like in the lasso problem, using a 1-norm tends to
introduce many zeros into Ω.

The regularization parameter ρ can be chosen by
cross-validation.

The above problem can be e�ciently solved for problems with
up to a few thousand variables (see e.g. ESL, Algorithm 17.2).
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The Graphical Lasso (cont.)

We need to maximize

F (Ω) := log det Ω− Tr(SΩ)− ρ
p∑

i,j=1

‖Ω‖1.

Since F is concave, we can use the sub-gradient to identify optimal
points of F

(to be really rigorous, we should be working with −F in
order to use the sub-gradient, but the derivation is the same).

We have

∂

∂Ω
log det Ω = Ω−1,

∂

∂Ω
Tr(SΩ) = S.

Also,

∂

p∑
i,j=1

|Ωij | = Sign(Ω)

where

Sign(Ω)ij =


1 if Ωij > 0

−1 if Ωij < 0

[−1, 1] if Ωij = 0

.
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The Graphical Lasso (cont.)

Putting everything together, we get

∂F = Ω−1 − S − ρ · Sign(Ω).

Just like for the lasso problem, we will derive a coordinate-wise

approach to solve the glasso problem.
Let W = Ω−1. Write W and Ω in block form

W =

(
W11 w12

wT12 w22

)
, Ω =

(
Ω11 ω12

ωT12 ω22

)
,

where W11,Ω11 ∈ R(p−1)×(p−1).
We will cyclically optimize F , one column/row at a time.
Note that since WΩ = I, we have(
W11Ω11 + w12ω

T
12 W11ω12 + w12ω22

wT12Ω11 + w22ω
T
12 wT12ω12 + w22ω22

)
=

(
I(p−1)×(p−1) 0(p−1)×1

01×(p−1) 0

)
.
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The Graphical Lasso (cont.)

In particular, we have W11ω12 + w12ω22 = 0, i.e.,

w12 = −W11
ω12

ω22
= W11β,

where β := −ω12/ω22.

Now, the upper right block of Ω−1 − S − ρ · Sign(Ω) is equal to

w12 − s12 + ρ · Sign(β)

since ω22 > 0.
We need to choose w12 such that

0 ∈ w12 − s12 + ρ · Sign(β)⇔ 0 ∈W11β − s12 + ρ · Sign(β).

Observation: in the lasso problem minβ
1
2‖y − Zβ‖

2 + ρ‖β‖1, we
have

∂

(
1

2
‖y − Zβ‖2 + ρ‖β‖1

)
= ZTZβ − ZT y + ρ · Sign(β).
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The Graphical Lasso (cont.)

So, we have the two optimality conditions:

Glasso update: 0 ∈W11β − s12 + ρ · Sign(β)

Lasso problem: 0 ∈ ZTZβ − ZT y + ρ · Sign(β)

Now, let Z := W
1/2
11 , and y := W

−1/2
11 s12.

The glasso update is thus equivalent to solving the lasso problem:

min
β

1

2
‖W−1/2

11 s12 −W 1/2
11 β‖22 + ρ‖β‖1.

We can therefore solve the glasso problem by cycling through the
row/columns of W , and updating them by solving a lasso problem!
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The Graphical Lasso (cont.)

We therefore have the following algorithm to solve the glasso
problem.

ESL, Algorithm 17.2.
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MLE estimation of a GGM

From the glasso solution, one infers a conditional

independence graph for X = (X1, . . . , Xp) by examining the
zeros in the estimated inverse covariance matrix.

Given a graph G = (V,E) with p vertices, let

PG := {A ∈ Pp : Aij = 0 if (i, j) 6∈ E}.

We can now estimate the optimal covariance matrix with the
given graph structure by solving:

Σ̂G := argmax
Σ : Ω=Σ−1∈PG

l(Σ),

where l(Σ) denotes the log-likelihood of Σ.
Note: Instead of maximizing the log-likelihood over all possible

psd matrices as in the classical case, we restrict ourselves to the
matrices having the right conditional independence structure.
The �graphical MLE� problem can be solved e�ciently for up to a

few thousand variables (see e.g. ESL, Algorithm 17.1).
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MLE estimation of a GGM (cont.)

Computing the Gaussian MLE of a multivariate normal random
vector with known conditional independence graph G:

ESL, Algorithm 17.1.

The derivation of the algorithm is similar to the derivation of the
glasso algorithm (see ESL, Section 17.3.1).
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Application

Example: Estimating the conditional independencies in temperature
�elds (Guillot et al., 2015)

Reconstructing climate �elds using paleoclimate proxies:

Estimate conditional independence graph
on instrumental period.

Use an EM algorithm with an embedded
graphical model.

The resulting algorithm is called
GraphEM.

See Guillot et al.(2015) for more details.
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