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Estimating the conditional independence structure of a GGM

During the last lecture, we have shown that when X ~ N(u,X),
Q X; 1l X;iff ¥;; =0.
Q X, 1L Xj | rest iff (E_l)ij =0.
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o Suppose M. .. z(" & R? are iid observations of X. The
associated log-likelihood of (1, ) is given by

n

n 1 ; 1, G n
(1,2) = = log det B2 3~ () =) "5 (af )—,u)—7plog(27r).
=1

Classical result: the MLE of (i, X) is given by
pomt Zn:x(n g._ 1 3 (@ — ) — )T,
[ 7 ‘
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Estimating the CI structure of a GGM (cont.)

e Using /i and &, we can conveniently rewrite the log-likelihood as:

(1,3 = — glog det ¥ — gmsz—l) - % log(27)

n

— 5 T (= w) (= m)").

(use the identity #7 Az = Tr(AzzT).
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— ST = ) (i - w)").
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(The last inequality holds since X! is positive definite.)
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Estimating the CI structure of a GGM (cont.)
e Using /i and &, we can conveniently rewrite the log-likelihood as:

(1,3 = — glog det ¥ — gmsz—l) - % log(27)

— ST = ) (i - w)").

(use the identity #7 Az = Tr(AzzT).
@ Note that the last term is minimized when y = /i (independently
of X) since

Te(S (= ) (= 1)T) = (7o = )= (= 1) > 0.

(The last inequality holds since X! is positive definite.)
@ Therefore the log-likelihood of Q := %71 is

1(Q) o logdet Q — Tr(S9Q) (up to a constant).
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The Graphical Lasso

The Graphical Lasso (glasso) algorithm (Friedman, Hastie,
Tibshirani, 2007), Banerjee et al. (2007), solves the penalized
likelihood problem:

Q, = argmax |logdet Q — Tr(SQ) — p Z 1211 ,
Q psd ij—1

where ||Q|]; := szl |€25], and p > 0 is a fixed regularization
parameter.
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Tibshirani, 2007), Banerjee et al. (2007), solves the penalized
likelihood problem:

Q, = argmax |logdet Q — Tr(SQ) — p Z 1211 ,
Q psd ij—1

where ||Q|]; := f,j:l |€25], and p > 0 is a fixed regularization
parameter.
o Idea: Make a trade-off between maximizing the likelihood and
having a sparse (2.
@ Just like in the lasso problem, using a 1-norm tends to
introduce many zeros into €.
@ The regularization parameter p can be chosen by
cross-validation.
@ The above problem can be efficiently solved for problems with
up to a few thousand variables (see e.g. ESL, Algorithm 17.2).
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The Graphical Lasso (cont.)

@ We need to maximize

F(Q) := logdet Q — Tr(SQ) — pZ 1€/

7,7=1

@ Since F' is concave, we can use the sub-gradient to identify optimal
points of F'
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The Graphical Lasso (cont.)

@ We need to maximize

F(Q) := logdet Q — Tr(SQ) — pZ 1€/

7,7=1

@ Since F' is concave, we can use the sub-gradient to identify optimal
points of F' (to be really rigorous, we should be working with —F in
order to use the sub-gradient, but the derivation is the same).

@ We have

0 1 0

E) logdet 2 = Q™ 8—QTr(SQ) S.
Also,

P
0 19| = Sign()
i,j=1
where
1 if Qij >0
Slgn(Q)” =<¢ -1 if Qij <0.

[~1,1] i Q=0
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The Graphical Lasso (cont.)

@ Putting everything together, we get

OF = Q7' — 5 — p-Sign(Q).
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The Graphical Lasso (cont.)

@ Putting everything together, we get
OF = Q7' — 5 — p-Sign(Q).

@ Just like for the lasso problem, we will derive a coordinate-wise
approach to solve the glasso problem.
o Let W = Q7! Write W and € in block form

W = <‘Z%1 Zl?) : 0= <Q%,11 w12> 7
12 W22 Wip W22
where Wip,Qq; € Re-Dx(-1),

e We will cyclically optimize F', one column/row at a time.
@ Note that since WQ = I, we have

<W11911 + wiowly Wiiwis + w12w22) _ (I(p—l)x(p—l) 0(p—1)><1>
winQ1 + waowly  whwis + waswas O1x(p-1) 0 '

6/12



The Graphical Lasso (cont.)

@ In particular, we have Wiiwio + wiawse = 0, i.e.,

w12
wig = —Wii— = Wi,
wa2

where B = —W12/UJ22.
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The Graphical Lasso (cont.)

@ In particular, we have Wiiwio + wiawse = 0, i.e.,

w12
wig = —Wii— = Wi,
wa2

where B = —W12/UJ22.
o Now, the upper right block of Q7! — S — p - Sign(Q) is equal to

wig — s12 + p - Sign(B)

since wog > 0.
@ We need to choose wis such that

0cwi—sS12+p- Sign(ﬁ) S0eWpf—sio+p- Sign(ﬂ).

Observation: in the lasso problem ming 3 |ly — ZB3||? + p||B]|1, we
have

0 (= 2817+ o3I ) = 2725~ 27y + p-Sign(s).
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The Graphical Lasso (cont.)

So, we have the two optimality conditions:
o Glasso update: 0 € W18 — s12 + p - Sign(p)
e Lasso problem: 0 ¢ Z7Z3 — Z"y + p - Sign(B)
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The Graphical Lasso (cont.)

So, we have the two optimality conditions:
o Glasso update: 0 € W18 — s12 + p - Sign(p)
e Lasso problem: 0 ¢ Z7Z3 — Z"y + p - Sign(B)

Now, let Z := W111/2 and y := W1—11/2512_
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The Graphical Lasso (cont.)

So, we have the two optimality conditions:
o Glasso update: 0 € W18 — s12 + p - Sign(p)
e Lasso problem: 0 ¢ Z7Z3 — Z"y + p - Sign(B)

Now, let Z := W /2, and y := W1—11/2512_
@ The glasso update is thus equivalent to solving the lasso problem:

1 2 1/2
min 513y 512 = WiB13 + ol
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The Graphical Lasso (cont.)

So, we have the two optimality conditions:
o Glasso update: 0 € W18 — s12 + p - Sign(p)
e Lasso problem: 0 ¢ Z7Z3 — Z"y + p - Sign(B)
Now, let Z := W /2, and y := Wﬂ1/2512.
@ The glasso update is thus equivalent to solving the lasso problem:

/2

1/2
min 513y 512 = WiB13 + ol

We can therefore solve the glasso problem by cycling through the
row/columns of W, and updating them by solving a lasso problem!
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The Graphical Lasso (cont.)

We therefore have the following algorithm to solve the glasso
problem.

Algorithm 17.2 Graphical Lasso.

1. Initialize W = S + AL The diagonal of W remains unchanged in
what follows.

2. Repeat for j =1,2,...p,1,2,...p, ... until convergence:
(a) Partition the matrix W into part 1: all but the jth row and
column, and part 2: the jth row and column.

(b) Solve the estimating equations W13 — s12 + A - Sign(8) = 0
using the cyclical coordinate-descent algorithm (17.26) for the
modified lasso.

(c) Update wyz = WMB
3. In the final cycle (for each j) solve for élg = 7,8 - égg, with 1/(922 =

; wl
waz — wizf.

ESL, Algorithm 17.2.
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MLE estimation of a GGM

@ From the glasso solution, one infers a conditional
independence graph for X = (Xj,..., X,,) by examining the
zeros in the estimated inverse covariance matrix.
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MLE estimation of a GGM

@ From the glasso solution, one infers a conditional
independence graph for X = (Xj,..., X,,) by examining the
zeros in the estimated inverse covariance matrix.

e Given a graph G = (V, E)) with p vertices, let
Pg := {AEPpiAijZOif(i,j) §ZE}

@ We can now estimate the optimal covariance matrix with the
given graph structure by solving:

So:= argmax (%),
Y Q=%-1ePg

where [(X) denotes the log-likelihood of X.
o Note: Instead of maximizing the log-likelihood over all possible
psd matrices as in the classical case, we restrict ourselves to the
matrices having the right conditional independence structure.
@ The “graphical MLE" problem can be solved efficiently for up to a
few thousand variables (see e.g. ESL, Algorithm 17.1).
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MLE estimation of a GGM (cont.)

Computing the Gaussian MLE of a multivariate normal random
vector with known conditional independence graph G:

Algorithm 17.1 A Modified Regression Algorithm for Estimation of an
Undirected Gaussian Graphical Model with Known Structure.

1. Initialize W = S.

2. Repeat for j =1,2,...,p until convergence:
(a) Partition the matrix W into part 1: all but the jth row and
column, and part 2: the jth row and column.
(b) Solve WT,8* — s = 0 for the unconstrained edge parameters
4%, using the reduced system of equations as in (17.19). Obtain
3 by padding 3* with zeros in the appropriate positions.
(¢) Update wig = Wnﬁ

3. In the final cycle (for each j) solve for O1p = 7[3 + O, with 1/6;22 =
s92 — whhf.

ESL, Algorithm 17.1.

The derivation of the algorithm is similar to the derivation of the
glasso algorithm (see ESL, Section 17.3.1).
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Application

Example: Estimating the conditional independencies in temperature
fields (Guillot et al., 2015)
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Application

Example: Estimating the conditional independencies in temperature
fields (Guillot et al., 2015)

1.50N, 127.50W 41.50N, 127.50W 41.50N, 12.50W

FIG. 3. Example of estimated graphical structure of a temperature field (HadCRUT3v).

Reconstructing climate fields using paleoclimate proxies:

e Estimate conditional independence graph
on instrumental period.

@ Use an EM algorithm with an embedded
graphical model.

@ The resulting algorithm is called

GraphEM.
See Guillot et al.(2015) for more details.
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