MATH 829: Introduction to Data Mining and Analysis Hidden Markov Models - Review of Markov chains

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

May 9, 2016

• Let $S := \{s_1, s_2, \dots\}$ be a countable set.

- Let $S := \{s_1, s_2, \dots\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\{X_n: n=0,1,\ldots\}$ such that

- Let $S:=\{s_1,s_2,\dots\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\{X_n: n=0,1,\ldots\}$ such that
 - X_n is an S-valued random variable $\forall n \geq 0$.

- Let $S:=\{s_1,s_2,\dots\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\{X_n: n=0,1,\ldots\}$ such that
 - X_n is an S-valued random variable $\forall n \ge 0$.
 - (Markov Property) For all $i, j, i_0, \ldots, i_{n-1} \in S$, and all $n \ge 0$:

- Let $S:=\{s_1,s_2,\dots\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\{X_n: n=0,1,\ldots\}$ such that
 - X_n is an S-valued random variable $\forall n \ge 0$.
 - 3 (Markov Property) For all $i, j, i_0, \ldots, i_{n-1} \in S$, and all $n \ge 0$:

$$P(X_{n+1} = j | X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i).$$

- Let $S:=\{s_1,s_2,\dots\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\{X_n : n = 0, 1, ...\}$ such that
 - X_n is an S-valued random variable $\forall n \ge 0$.
 - 3 (Markov Property) For all $i, j, i_0, \ldots, i_{n-1} \in S$, and all $n \ge 0$:

 $P(X_{n+1} = j | X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i).$

Interpretation: Given the present X_n , the future X_{n+1} is independent of the past (X_0, \ldots, X_{n-1}) .

- Let $S:=\{s_1,s_2,\dots\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\{X_n : n = 0, 1, ...\}$ such that
 - X_n is an S-valued random variable $\forall n \ge 0$.
 - 3 (Markov Property) For all $i, j, i_0, \ldots, i_{n-1} \in S$, and all $n \ge 0$:

 $P(X_{n+1} = j | X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i).$

Interpretation: Given the present X_n , the future X_{n+1} is independent of the past (X_0, \ldots, X_{n-1}) .

 \bullet The elements of S are called the states of the Markov chain.

- Let $S:=\{s_1,s_2,\dots\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\{X_n : n = 0, 1, ...\}$ such that
 - X_n is an S-valued random variable $\forall n \ge 0$.
 - 3 (Markov Property) For all $i, j, i_0, \ldots, i_{n-1} \in S$, and all $n \ge 0$:

 $P(X_{n+1} = j | X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i).$

Interpretation: Given the present X_n , the future X_{n+1} is independent of the past (X_0, \ldots, X_{n-1}) .

- \bullet The elements of S are called the states of the Markov chain.
- When $X_n = j$, we say that the process is in state j at time n.

• A Markov chain is homogeneous (or stationary) if for all $n \ge 0$ and all $i, j \in S$,

$$P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) =: p(i, j).$$

• A Markov chain is homogeneous (or stationary) if for all $n \ge 0$ and all $i, j \in S$,

$$P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) =: p(i, j).$$

In other words, the **transition probabilities** do not depend on time.

• A Markov chain is homogeneous (or stationary) if for all $n \ge 0$ and all $i, j \in S$,

$$P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) =: p(i, j).$$

In other words, the **transition probabilities** do not depend on time.

• We will only consider homogeneous chains in what follows.

• A Markov chain is homogeneous (or stationary) if for all $n \ge 0$ and all $i, j \in S$,

$$P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) =: p(i, j).$$

In other words, the **transition probabilities** do not depend on time.

- We will only consider homogeneous chains in what follows.
- We denote by $P := (p(i, j))_{i,j \in S}$ the transition matrix of the chain.

• A Markov chain is homogeneous (or stationary) if for all $n \ge 0$ and all $i, j \in S$,

$$P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) =: p(i, j).$$

In other words, the **transition probabilities** do not depend on time.

• We will only consider homogeneous chains in what follows.

• We denote by $P := (p(i, j))_{i,j \in S}$ the transition matrix of the chain.

• Note: P is a stochastic matrix, i.e.,

$$\forall i, j \in S, \ p(i, j) \ge 0, \quad \text{and} \quad \forall i \in S, \ \sum_{j \in S} p(i, j) = 1.$$

• A Markov chain is homogeneous (or stationary) if for all $n \ge 0$ and all $i, j \in S$,

$$P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) =: p(i, j).$$

In other words, the **transition probabilities** do not depend on time.

- We will only consider homogeneous chains in what follows.
- We denote by $P := (p(i, j))_{i,j \in S}$ the transition matrix of the chain.
- Note: P is a stochastic matrix, i.e.,

$$\forall i, j \in S, \ p(i, j) \ge 0, \quad \text{and} \quad \forall i \in S, \ \sum_{j \in S} p(i, j) = 1.$$

• Conversely, every stochastic matrix is the transition matrix of some homogeneous discrete time Markov chain.

Example 1: (Two-state Markov chain)

$$S = \{0, 1\}, \quad p(0, 1) = a, \quad p(1, 0) = b, \quad a, b \in [0, 1]$$
$$P = \begin{pmatrix} 1 - a & a \\ b & 1 - b \end{pmatrix}.$$

Example 1: (Two-state Markov chain)

$$\begin{split} S &= \{0,1\}, \quad p(0,1) = a, \quad p(1,0) = b, \quad a,b \in [0,1] \\ P &= \begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix}. \end{split}$$

We naturally represent P using a transition (or state) diagram:

Example 1: (Two-state Markov chain)

$$S = \{0, 1\}, \quad p(0, 1) = a, \quad p(1, 0) = b, \quad a, b \in [0, 1]$$
$$P = \begin{pmatrix} 1 - a & a \\ b & 1 - b \end{pmatrix}.$$

We naturally represent P using a transition (or state) diagram:

Interpretation: machine is either broken (0) or working (1) at start of *n*-th day.

Example 2: (Simple random walk) Let $\xi_1, \xi_2, \xi_3, \ldots$ be iid random variables such that $\forall i \geq 1$,

$$\xi_i = \begin{cases} +1 & P(\xi_i = +1) = p \\ 0 & P(\xi_i = 0) = r \\ -1 & P(\xi_i = -1) = q \end{cases}$$

where p + r + q = 1, $p, r, q \ge 0$.

Example 2: (Simple random walk) Let $\xi_1, \xi_2, \xi_3, \ldots$ be iid random variables such that $\forall i \geq 1$,

$$\xi_i = \begin{cases} +1 & P(\xi_i = +1) = p \\ 0 & P(\xi_i = 0) = r \\ -1 & P(\xi_i = -1) = q \end{cases}$$

where p + r + q = 1, $p, r, q \ge 0$.

• Let X_0 be an integer valued random variable independent of the ξ_i 's.

Example 2: (Simple random walk) Let $\xi_1, \xi_2, \xi_3, \ldots$ be iid random variables such that $\forall i \geq 1$,

$$\xi_i = \begin{cases} +1 & P(\xi_i = +1) = p \\ 0 & P(\xi_i = 0) = r \\ -1 & P(\xi_i = -1) = q \end{cases}$$

where p + r + q = 1, $p, r, q \ge 0$.

• Let X_0 be an integer valued random variable independent of the ξ_i 's.

• Define $\forall n \geq 1$,

$$X_n = X_0 + \sum_{i=1}^n \xi_i.$$

Example 2: (Simple random walk) Let $\xi_1, \xi_2, \xi_3, \ldots$ be iid random variables such that $\forall i \geq 1$,

$$\xi_i = \begin{cases} +1 & P(\xi_i = +1) = p \\ 0 & P(\xi_i = 0) = r \\ -1 & P(\xi_i = -1) = q \end{cases}$$

where p + r + q = 1, $p, r, q \ge 0$.

• Let X_0 be an integer valued random variable independent of the ξ_i 's.

• Define $\forall n \geq 1$,

$$X_n = X_0 + \sum_{i=1}^n \xi_i.$$

• The process is a random walk.

Review of Markov chains (cont.)

• Here $S = \{0, \pm 1, \pm 2, \dots\}.$

Review of Markov chains (cont.)

• Here $S = \{0, \pm 1, \pm 2, \dots\}.$

Exercise: What is P for that Markov chain?

Let $\{X_n : n \ge 0\}$ be a Markov chain.

Let $\{X_n : n \ge 0\}$ be a Markov chain.

• We define the initial distribution of the chain by

 $\mu_0(i) := P(X_0 = i) \qquad (i \in S).$

Let $\{X_n : n \ge 0\}$ be a Markov chain.

• We define the initial distribution of the chain by

 $\mu_0(i) := P(X_0 = i) \qquad (i \in S).$

• All distributional properties of a (homogeneous) Markov Chain are determined by its initial distribution and transition probability matrix.

Let $\{X_n : n \ge 0\}$ be a Markov chain.

• We define the initial distribution of the chain by

$$\mu_0(i) := P(X_0 = i) \qquad (i \in S).$$

• All distributional properties of a (homogeneous) Markov Chain are determined by its initial distribution and transition probability matrix.

 \bullet For $n\geq 1,$ we define the n-step transition probability $p^n(i,j)$ by

$$p^{n}(i,j) := P(X_{n} = j | X_{0} = i) = P(X_{n+m} = j | X_{m} = i).$$

Let $\{X_n : n \ge 0\}$ be a Markov chain.

• We define the initial distribution of the chain by

$$\mu_0(i) := P(X_0 = i) \qquad (i \in S).$$

• All distributional properties of a (homogeneous) Markov Chain are determined by its initial distribution and transition probability matrix.

 \bullet For $n\geq 1,$ we define the n-step transition probability $p^n(i,j)$ by

$$p^{n}(i,j) := P(X_{n} = j | X_{0} = i) = P(X_{n+m} = j | X_{m} = i).$$

Also, define

$$p^{0}(i,j) = \begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases}$$

Let $\{X_n : n \ge 0\}$ be a Markov chain.

• We define the initial distribution of the chain by

$$\mu_0(i) := P(X_0 = i) \qquad (i \in S).$$

• All distributional properties of a (homogeneous) Markov Chain are determined by its initial distribution and transition probability matrix.

 \bullet For $n\geq 1,$ we define the n-step transition probability $p^n(i,j)$ by

$$p^{n}(i,j) := P(X_{n} = j | X_{0} = i) = P(X_{n+m} = j | X_{m} = i).$$

Also, define

$$p^{0}(i,j) = \begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases}$$

• We define the n-step transition matrix by

$$P^{(n)} := (p^n(i,j) : i, j \in S).$$

Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \ge 1$: $P^{(n+m)} = P^{(n)} \cdot P^{(m)}.$

Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \ge 1$:

$$P^{(n+m)} = P^{(n)} \cdot P^{(m)}.$$

In particular, for all $n \ge 1$,

$$P^{(n)} = P \cdot P^{(n-1)} = \dots = P^n.$$

Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \ge 1$:

$$P^{(n+m)} = P^{(n)} \cdot P^{(m)}.$$

In particular, for all $n \ge 1$,

$$P^{(n)} = P \cdot P^{(n-1)} = \dots = P^n.$$

Moral: *n*-step transition probabilities are computed using matrix multiplications.

Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \ge 1$:

$$P^{(n+m)} = P^{(n)} \cdot P^{(m)}.$$

In particular, for all $n \ge 1$,

$$P^{(n)} = P \cdot P^{(n-1)} = \dots = P^n.$$

Moral: *n*-step transition probabilities are computed using matrix multiplications.

• Let $\mu_n := (\mu_n(i) : i \in S)$ denote the distribution of X_n :

$$\mu_n(i) := P(X_n = i).$$

Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \ge 1$:

$$P^{(n+m)} = P^{(n)} \cdot P^{(m)}.$$

In particular, for all $n \ge 1$,

$$P^{(n)} = P \cdot P^{(n-1)} = \dots = P^n.$$

Moral: *n*-step transition probabilities are computed using matrix multiplications.

• Let $\mu_n := (\mu_n(i) : i \in S)$ denote the distribution of X_n :

$$\mu_n(i) := P(X_n = i).$$

Proposition: We have

$$\mu_{m+n} = \mu_m P^n$$
, and $\mu_n = \mu_0 P^n$.

Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \ge 1$:

$$P^{(n+m)} = P^{(n)} \cdot P^{(m)}.$$

In particular, for all $n \ge 1$,

$$P^{(n)} = P \cdot P^{(n-1)} = \dots = P^n.$$

Moral: *n*-step transition probabilities are computed using matrix multiplications.

• Let $\mu_n := (\mu_n(i) : i \in S)$ denote the distribution of X_n :

$$\mu_n(i) := P(X_n = i).$$

Proposition: We have

$$\mu_{m+n} = \mu_m P^n$$
, and $\mu_n = \mu_0 P^n$.

Moral: Distributional computations for Markov Chains are just matrix multiplications.

• Reducibility:

 A state j ∈ S is said to be accessible from i ∈ S (denotde i → j) if a system started in state i has a non-zero probability of transitioning into state j at some point.

Reducibility:

- A state j ∈ S is said to be accessible from i ∈ S (denotde i → j) if a system started in state i has a non-zero probability of transitioning into state j at some point.
- A state $i \in S$ is said to **communicate** with state $j \in S$ (denoted $i \leftrightarrow j$) if both $i \rightarrow j$ and $j \rightarrow i$.

• Reducibility:

- A state j ∈ S is said to be accessible from i ∈ S (denotde i → j) if a system started in state i has a non-zero probability of transitioning into state j at some point.
- A state $i \in S$ is said to **communicate** with state $j \in S$ (denoted $i \leftrightarrow j$) if both $i \rightarrow j$ and $j \rightarrow i$.

Note: Communication is an equivalence relation.

Reducibility:

- A state j ∈ S is said to be accessible from i ∈ S (denotde i → j) if a system started in state i has a non-zero probability of transitioning into state j at some point.
- A state $i \in S$ is said to **communicate** with state $j \in S$ (denoted $i \leftrightarrow j$) if both $i \rightarrow j$ and $j \rightarrow i$.
- Note: Communication is an equivalence relation.

A Markov chain is said to be **irreducible** if its state space is a single communicating class.

- Transience:
 - A state $i \in S$ is said to be **transient** if, given that we start in state i, there is a non-zero probability that we will never return to i.

- Transience:
 - A state $i \in S$ is said to be **transient** if, given that we start in state i, there is a non-zero probability that we will never return to i.
 - A state is **recurrent** if it is not transient.

• Transience:

- A state i ∈ S is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is **recurrent** if it is not transient.
- The recurrence time of state $i \in S$ is $T_i := \min\{n \ge 1 : X_n = i \text{ given } X_0 = i\}.$

• Transience:

- A state i ∈ S is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is **recurrent** if it is not transient.
- The recurrence time of state $i \in S$ is $T_i := \min\{n \ge 1 : X_n = i \text{ given } X_0 = i\}.$
- Note: $i \in S$ is recurrent iff $P(T_i < \infty) = 1$.

• Transience:

- A state i ∈ S is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is **recurrent** if it is not transient.
- The recurrence time of state $i \in S$ is $T_i := \min\{n \ge 1 : X_n = i \text{ given } X_0 = i\}.$
- Note: $i \in S$ is recurrent iff $P(T_i < \infty) = 1$.
- A recurrent state $i \in S$ is **positive recurrent** if $E[T_i] < \infty$.

• Periodicity:

• A state $i \in S$ has period k if

$$k = \gcd\{n > 0 : P(X_n = i | X_0 = i) > 0\}.$$

• Transience:

- A state i ∈ S is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is **recurrent** if it is not transient.
- The recurrence time of state $i \in S$ is $T_i := \min\{n \ge 1 : X_n = i \text{ given } X_0 = i\}.$
- Note: $i \in S$ is recurrent iff $P(T_i < \infty) = 1$.
- A recurrent state $i \in S$ is **positive recurrent** if $E[T_i] < \infty$.

• Periodicity:

• A state $i \in S$ has period k if

$$k = \gcd\{n > 0 : P(X_n = i | X_0 = i) > 0\}.$$

For example, suppose you start in state i and can only return to i at time 6, 8, 10, 12, etc.. Then the period of i is 2.

• Transience:

- A state i ∈ S is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is **recurrent** if it is not transient.
- The recurrence time of state $i \in S$ is $T_i := \min\{n \ge 1 : X_n = i \text{ given } X_0 = i\}.$
- Note: $i \in S$ is recurrent iff $P(T_i < \infty) = 1$.
- A recurrent state $i \in S$ is **positive recurrent** if $E[T_i] < \infty$.

• Periodicity:

• A state $i \in S$ has period k if

$$k = \gcd\{n > 0 : P(X_n = i | X_0 = i) > 0\}.$$

For example, suppose you start in state i and can only return to i at time 6, 8, 10, 12, etc.. Then the period of i is 2.

• If k = 1, then the state is said to be aperiodic.

• Transience:

- A state i ∈ S is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is **recurrent** if it is not transient.
- The recurrence time of state $i \in S$ is $T_i := \min\{n \ge 1 : X_n = i \text{ given } X_0 = i\}.$
- Note: $i \in S$ is recurrent iff $P(T_i < \infty) = 1$.
- A recurrent state $i \in S$ is **positive recurrent** if $E[T_i] < \infty$.

• Periodicity:

• A state $i \in S$ has period k if

$$k = \gcd\{n > 0 : P(X_n = i | X_0 = i) > 0\}.$$

For example, suppose you start in state i and can only return to i at time 6, 8, 10, 12, etc.. Then the period of i is 2.

- If k = 1, then the state is said to be aperiodic.
 - A Markov chain is **aperiodic** if every state is aperiodic.

Limiting behavior of Markov chains: What happens to $p^n(i,j)$ as $n \to \infty?$

Limiting behavior of Markov chains: What happens to $p^n(i, j)$ as $n \to \infty$?

Example: (The two-state Markov chain)

If $(a,b) \neq (0,0)$, we have (exercise):

$$P^{n} = \frac{1}{a+b} \begin{pmatrix} b & a \\ b & a \end{pmatrix} + \frac{(1-a-b)^{n}}{a+b} \begin{pmatrix} a & -a \\ -b & b \end{pmatrix}.$$

Limiting behavior of Markov chains: What happens to $p^n(i, j)$ as $n \to \infty$?

Example: (The two-state Markov chain)

If $(a,b) \neq (0,0)$, we have (exercise):

$$P^{n} = \frac{1}{a+b} \begin{pmatrix} b & a \\ b & a \end{pmatrix} + \frac{(1-a-b)^{n}}{a+b} \begin{pmatrix} a & -a \\ -b & b \end{pmatrix}.$$

Thus, if $(a,b) \neq (0,0)$ and $(a,b) \neq (1,1),$ then

$$\lim_{n \to \infty} p^n(0,0) = \lim_{n \to \infty} p^n(1,0) = \frac{b}{a+b}$$
$$\lim_{n \to \infty} p^n(0,1) = \lim_{n \to \infty} p^n(1,1) = \frac{a}{a+b}.$$

Limiting behavior of Markov chains: What happens to $p^n(i, j)$ as $n \to \infty$?

Example: (The two-state Markov chain)

If $(a,b) \neq (0,0)$, we have (exercise):

$$P^{n} = \frac{1}{a+b} \begin{pmatrix} b & a \\ b & a \end{pmatrix} + \frac{(1-a-b)^{n}}{a+b} \begin{pmatrix} a & -a \\ -b & b \end{pmatrix}.$$

Thus, if $(a,b) \neq (0,0)$ and $(a,b) \neq (1,1),$ then

$$\lim_{n \to \infty} p^n(0,0) = \lim_{n \to \infty} p^n(1,0) = \frac{b}{a+b}$$
$$\lim_{n \to \infty} p^n(0,1) = \lim_{n \to \infty} p^n(1,1) = \frac{a}{a+b}$$

Thus, the chain has a limiting distribution.

Limiting behavior of Markov chains: What happens to $p^n(i, j)$ as $n \to \infty$?

Example: (The two-state Markov chain)

If $(a,b) \neq (0,0)$, we have (exercise):

$$P^{n} = \frac{1}{a+b} \begin{pmatrix} b & a \\ b & a \end{pmatrix} + \frac{(1-a-b)^{n}}{a+b} \begin{pmatrix} a & -a \\ -b & b \end{pmatrix}.$$

Thus, if $(a,b) \neq (0,0)$ and $(a,b) \neq (1,1),$ then

$$\lim_{n \to \infty} p^n(0,0) = \lim_{n \to \infty} p^n(1,0) = \frac{b}{a+b}$$
$$\lim_{n \to \infty} p^n(0,1) = \lim_{n \to \infty} p^n(1,1) = \frac{a}{a+b}$$

Thus, the chain has a limiting distribution.

The limiting distribution is independent of the initial state.

Recall: $\mu_{n+1} = \mu_n P$.

Recall: $\mu_{n+1} = \mu_n P$. A vector $\pi = (\pi(i) : i \in S)$ is said to be a stationary distribution for a Markov chain $\{X_n : n \ge 0\}$ if

$$0 \le \pi_i \le 1 \ \forall i \in S.$$

$$2 \quad \sum_{i \in S} \pi_i = 1.$$

• $\pi = \pi P$, where P is the transition probability matrix of the Markov chain.

Recall: $\mu_{n+1} = \mu_n P$. A vector $\pi = (\pi(i) : i \in S)$ is said to be a stationary distribution for a Markov chain $\{X_n : n \ge 0\}$ if

$$0 \le \pi_i \le 1 \ \forall i \in S.$$

$$2 \quad \sum_{i \in S} \pi_i = 1.$$

• $\pi = \pi P$, where P is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

Recall: $\mu_{n+1} = \mu_n P$. A vector $\pi = (\pi(i) : i \in S)$ is said to be a stationary distribution for a Markov chain $\{X_n : n \ge 0\}$ if

$$0 \le \pi_i \le 1 \ \forall i \in S.$$

$$2 \sum_{i \in S} \pi_i = 1.$$

• $\pi = \pi P$, where P is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

Theorem: Let $\{X_n : n \ge 0\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then

Recall: $\mu_{n+1} = \mu_n P$. A vector $\pi = (\pi(i) : i \in S)$ is said to be a stationary distribution for a Markov chain $\{X_n : n \ge 0\}$ if

$$0 \le \pi_i \le 1 \ \forall i \in S.$$

$$2 \sum_{i \in S} \pi_i = 1.$$

• $\pi = \pi P$, where P is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

Theorem: Let $\{X_n : n \ge 0\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then

() The chain has a unique stationary distribution π .

Recall: $\mu_{n+1} = \mu_n P$. A vector $\pi = (\pi(i) : i \in S)$ is said to be a stationary distribution for a Markov chain $\{X_n : n \ge 0\}$ if

$$0 \le \pi_i \le 1 \ \forall i \in S.$$

$$2 \sum_{i \in S} \pi_i = 1.$$

• $\pi = \pi P$, where P is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

Theorem: Let $\{X_n : n \ge 0\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then

- The chain has a unique stationary distribution π .
- 2 For all $i \in S$, $\lim_{n \to \infty} P(X_n = i) = \pi(i)$.

Recall: $\mu_{n+1} = \mu_n P$. A vector $\pi = (\pi(i) : i \in S)$ is said to be a stationary distribution for a Markov chain $\{X_n : n \ge 0\}$ if

$$0 \le \pi_i \le 1 \ \forall i \in S.$$

$$2 \sum_{i \in S} \pi_i = 1.$$

• $\pi = \pi P$, where P is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

Theorem: Let $\{X_n : n \ge 0\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then

• The chain has a unique stationary distribution π .

2 For all
$$i \in S$$
, $\lim_{n \to \infty} P(X_n = i) = \pi(i)$.

 $\ \, \mathbf{3} \ \, \pi_i = \frac{1}{E[T_i]}.$

Recall: $\mu_{n+1} = \mu_n P$. A vector $\pi = (\pi(i) : i \in S)$ is said to be a stationary distribution for a Markov chain $\{X_n : n \ge 0\}$ if

$$0 \le \pi_i \le 1 \ \forall i \in S.$$

$$2 \sum_{i \in S} \pi_i = 1.$$

• $\pi = \pi P$, where P is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

Theorem: Let $\{X_n : n \ge 0\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then

() The chain has a unique stationary distribution π .

2 For all
$$i \in S$$
, $\lim_{n \to \infty} P(X_n = i) = \pi(i)$.

 $\ \, \mathbf{3} \ \, \pi_i = \frac{1}{E[T_i]} .$

 $\pi(i)$ can be interpreted as the average proportion of time spent by the chain in state i.