MATH 829: Introduction to Data Mining and Analysis

Hidden Markov Models - Review of Markov chains

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

May 9, 2016

Markov chains

- Let $S:=\left\{s_{1}, s_{2}, \ldots\right\}$ be a countable set.

Markov chains

- Let $S:=\left\{s_{1}, s_{2}, \ldots\right\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\left\{X_{n}: n=0,1, \ldots\right\}$ such that

Markov chains

- Let $S:=\left\{s_{1}, s_{2}, \ldots\right\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\left\{X_{n}: n=0,1, \ldots\right\}$ such that
(1) X_{n} is an S-valued random variable $\forall n \geq 0$.

Markov chains

- Let $S:=\left\{s_{1}, s_{2}, \ldots\right\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\left\{X_{n}: n=0,1, \ldots\right\}$ such that
(1) X_{n} is an S-valued random variable $\forall n \geq 0$.
(2) (Markov Property) For all $i, j, i_{0}, \ldots, i_{n-1} \in S$, and all $n \geq 0$:

Markov chains

- Let $S:=\left\{s_{1}, s_{2}, \ldots\right\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\left\{X_{n}: n=0,1, \ldots\right\}$ such that
(1) X_{n} is an S-valued random variable $\forall n \geq 0$.
(2) (Markov Property) For all $i, j, i_{0}, \ldots, i_{n-1} \in S$, and all $n \geq 0$:
$P\left(X_{n+1}=j \mid X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i\right)=P\left(X_{n+1}=j \mid X_{n}=i\right)$.

Markov chains

- Let $S:=\left\{s_{1}, s_{2}, \ldots\right\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\left\{X_{n}: n=0,1, \ldots\right\}$ such that
(1) X_{n} is an S-valued random variable $\forall n \geq 0$.
(2) (Markov Property) For all $i, j, i_{0}, \ldots, i_{n-1} \in S$, and all $n \geq 0$: $P\left(X_{n+1}=j \mid X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i\right)=P\left(X_{n+1}=j \mid X_{n}=i\right)$.

Interpretation: Given the present X_{n}, the future X_{n+1} is independent of the past $\left(X_{0}, \ldots, X_{n-1}\right)$.

Markov chains

- Let $S:=\left\{s_{1}, s_{2}, \ldots\right\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\left\{X_{n}: n=0,1, \ldots\right\}$ such that
(1) X_{n} is an S-valued random variable $\forall n \geq 0$.
(2) (Markov Property) For all $i, j, i_{0}, \ldots, i_{n-1} \in S$, and all $n \geq 0$:
$P\left(X_{n+1}=j \mid X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i\right)=P\left(X_{n+1}=j \mid X_{n}=i\right)$.

Interpretation: Given the present X_{n}, the future X_{n+1} is independent of the past $\left(X_{0}, \ldots, X_{n-1}\right)$.

- The elements of S are called the states of the Markov chain.
- Let $S:=\left\{s_{1}, s_{2}, \ldots\right\}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\left\{X_{n}: n=0,1, \ldots\right\}$ such that
(1) X_{n} is an S-valued random variable $\forall n \geq 0$.
(2) (Markov Property) For all $i, j, i_{0}, \ldots, i_{n-1} \in S$, and all $n \geq 0$:
$P\left(X_{n+1}=j \mid X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i\right)=P\left(X_{n+1}=j \mid X_{n}=i\right)$.

Interpretation: Given the present X_{n}, the future X_{n+1} is independent of the past $\left(X_{0}, \ldots, X_{n-1}\right)$.

- The elements of S are called the states of the Markov chain.
- When $X_{n}=j$, we say that the process is in state j at time n.

Stationarity and transition probabilities

- A Markov chain is homogeneous (or stationary) if for all $n \geq 0$ and all $i, j \in S$,

$$
P\left(X_{n+1}=j \mid X_{n}=i\right)=P\left(X_{1}=j \mid X_{0}=i\right)=: p(i, j)
$$

Stationarity and transition probabilities

- A Markov chain is homogeneous (or stationary) if for all $n \geq 0$ and all $i, j \in S$,

$$
P\left(X_{n+1}=j \mid X_{n}=i\right)=P\left(X_{1}=j \mid X_{0}=i\right)=: p(i, j) .
$$

In other words, the transition probabilities do not depend on time.

Stationarity and transition probabilities

- A Markov chain is homogeneous (or stationary) if for all $n \geq 0$ and all $i, j \in S$,

$$
P\left(X_{n+1}=j \mid X_{n}=i\right)=P\left(X_{1}=j \mid X_{0}=i\right)=: p(i, j)
$$

In other words, the transition probabilities do not depend on time.

- We will only consider homogeneous chains in what follows.

Stationarity and transition probabilities

- A Markov chain is homogeneous (or stationary) if for all $n \geq 0$ and all $i, j \in S$,

$$
P\left(X_{n+1}=j \mid X_{n}=i\right)=P\left(X_{1}=j \mid X_{0}=i\right)=: p(i, j)
$$

In other words, the transition probabilities do not depend on time.

- We will only consider homogeneous chains in what follows.
- We denote by $P:=(p(i, j))_{i, j \in S}$ the transition matrix of the chain.

Stationarity and transition probabilities

- A Markov chain is homogeneous (or stationary) if for all $n \geq 0$ and all $i, j \in S$,

$$
P\left(X_{n+1}=j \mid X_{n}=i\right)=P\left(X_{1}=j \mid X_{0}=i\right)=: p(i, j)
$$

In other words, the transition probabilities do not depend on time.

- We will only consider homogeneous chains in what follows.
- We denote by $P:=(p(i, j))_{i, j \in S}$ the transition matrix of the chain.
- Note: P is a stochastic matrix, i.e.,

$$
\forall i, j \in S, p(i, j) \geq 0, \quad \text { and } \quad \forall i \in S, \sum_{j \in S} p(i, j)=1
$$

Stationarity and transition probabilities

- A Markov chain is homogeneous (or stationary) if for all $n \geq 0$ and all $i, j \in S$,

$$
P\left(X_{n+1}=j \mid X_{n}=i\right)=P\left(X_{1}=j \mid X_{0}=i\right)=: p(i, j)
$$

In other words, the transition probabilities do not depend on time.

- We will only consider homogeneous chains in what follows.
- We denote by $P:=(p(i, j))_{i, j \in S}$ the transition matrix of the chain.
- Note: P is a stochastic matrix, i.e.,

$$
\forall i, j \in S, p(i, j) \geq 0, \quad \text { and } \quad \forall i \in S, \sum_{j \in S} p(i, j)=1
$$

- Conversely, every stochastic matrix is the transition matrix of some homogeneous discrete time Markov chain.

Examples

Example 1: (Two-state Markov chain)

$$
\begin{gathered}
S=\{0,1\}, \quad p(0,1)=a, \quad p(1,0)=b, \quad a, b \in[0,1] \\
P=\left(\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right) .
\end{gathered}
$$

Examples

Example 1: (Two-state Markov chain)

$$
\begin{gathered}
S=\{0,1\}, \quad p(0,1)=a, \quad p(1,0)=b, \quad a, b \in[0,1] \\
P=\left(\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right) .
\end{gathered}
$$

We naturally represent P using a transition (or state) diagram:

Examples

Example 1: (Two-state Markov chain)

$$
\begin{gathered}
S=\{0,1\}, \quad p(0,1)=a, \quad p(1,0)=b, \quad a, b \in[0,1] \\
P=\left(\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right) .
\end{gathered}
$$

We naturally represent P using a transition (or state) diagram:

Interpretation: machine is either broken (0) or working (1) at start of n-th day.

Examples (cont.)

Example 2: (Simple random walk) Let $\xi_{1}, \xi_{2}, \xi_{3}, \ldots$ be iid random variables such that $\forall i \geq 1$,

$$
\xi_{i}= \begin{cases}+1 & P\left(\xi_{i}=+1\right)=p \\ 0 & P\left(\xi_{i}=0\right)=r \\ -1 & P\left(\xi_{i}=-1\right)=q\end{cases}
$$

where $p+r+q=1, p, r, q \geq 0$.

Examples (cont.)

Example 2: (Simple random walk) Let $\xi_{1}, \xi_{2}, \xi_{3}, \ldots$ be iid random variables such that $\forall i \geq 1$,

$$
\xi_{i}= \begin{cases}+1 & P\left(\xi_{i}=+1\right)=p \\ 0 & P\left(\xi_{i}=0\right)=r \\ -1 & P\left(\xi_{i}=-1\right)=q\end{cases}
$$

where $p+r+q=1, p, r, q \geq 0$.

- Let X_{0} be an integer valued random variable independent of the ξ_{i} 's.

Examples (cont.)

Example 2: (Simple random walk) Let $\xi_{1}, \xi_{2}, \xi_{3}, \ldots$ be iid random variables such that $\forall i \geq 1$,

$$
\xi_{i}= \begin{cases}+1 & P\left(\xi_{i}=+1\right)=p \\ 0 & P\left(\xi_{i}=0\right)=r \\ -1 & P\left(\xi_{i}=-1\right)=q\end{cases}
$$

where $p+r+q=1, p, r, q \geq 0$.

- Let X_{0} be an integer valued random variable independent of the ξ_{i} 's.
- Define $\forall n \geq 1$,

$$
X_{n}=X_{0}+\sum_{i=1}^{n} \xi_{i}
$$

Examples (cont.)

Example 2: (Simple random walk) Let $\xi_{1}, \xi_{2}, \xi_{3}, \ldots$ be iid random variables such that $\forall i \geq 1$,

$$
\xi_{i}= \begin{cases}+1 & P\left(\xi_{i}=+1\right)=p \\ 0 & P\left(\xi_{i}=0\right)=r \\ -1 & P\left(\xi_{i}=-1\right)=q\end{cases}
$$

where $p+r+q=1, p, r, q \geq 0$.

- Let X_{0} be an integer valued random variable independent of the ξ_{i} 's.
- Define $\forall n \geq 1$,

$$
X_{n}=X_{0}+\sum_{i=1}^{n} \xi_{i}
$$

- The process is a random walk.

Review of Markov chains (cont.)

- Here $S=\{0, \pm 1, \pm 2, \ldots\}$.

Review of Markov chains (cont.)

- Here $S=\{0, \pm 1, \pm 2, \ldots\}$.

Exercise: What is P for that Markov chain?

n-step transitions

Let $\left\{X_{n}: n \geq 0\right\}$ be a Markov chain.

n-step transitions

Let $\left\{X_{n}: n \geq 0\right\}$ be a Markov chain.

- We define the initial distribution of the chain by

$$
\mu_{0}(i):=P\left(X_{0}=i\right) \quad(i \in S)
$$

n-step transitions

Let $\left\{X_{n}: n \geq 0\right\}$ be a Markov chain.

- We define the initial distribution of the chain by

$$
\mu_{0}(i):=P\left(X_{0}=i\right) \quad(i \in S)
$$

- All distributional properties of a (homogeneous) Markov Chain are determined by its initial distribution and transition probability matrix.

n-step transitions

Let $\left\{X_{n}: n \geq 0\right\}$ be a Markov chain.

- We define the initial distribution of the chain by

$$
\mu_{0}(i):=P\left(X_{0}=i\right) \quad(i \in S)
$$

- All distributional properties of a (homogeneous) Markov Chain are determined by its initial distribution and transition probability matrix.
- For $n \geq 1$, we define the n-step transition probability $p^{n}(i, j)$ by

$$
p^{n}(i, j):=P\left(X_{n}=j \mid X_{0}=i\right)=P\left(X_{n+m}=j \mid X_{m}=i\right)
$$

n-step transitions

Let $\left\{X_{n}: n \geq 0\right\}$ be a Markov chain.

- We define the initial distribution of the chain by

$$
\mu_{0}(i):=P\left(X_{0}=i\right) \quad(i \in S)
$$

- All distributional properties of a (homogeneous) Markov Chain are determined by its initial distribution and transition probability matrix.
- For $n \geq 1$, we define the n-step transition probability $p^{n}(i, j)$ by

$$
p^{n}(i, j):=P\left(X_{n}=j \mid X_{0}=i\right)=P\left(X_{n+m}=j \mid X_{m}=i\right) .
$$

Also, define

$$
p^{0}(i, j)=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array} .\right.
$$

n-step transitions

Let $\left\{X_{n}: n \geq 0\right\}$ be a Markov chain.

- We define the initial distribution of the chain by

$$
\mu_{0}(i):=P\left(X_{0}=i\right) \quad(i \in S)
$$

- All distributional properties of a (homogeneous) Markov Chain are determined by its initial distribution and transition probability matrix.
- For $n \geq 1$, we define the n-step transition probability $p^{n}(i, j)$ by

$$
p^{n}(i, j):=P\left(X_{n}=j \mid X_{0}=i\right)=P\left(X_{n+m}=j \mid X_{m}=i\right) .
$$

Also, define

$$
p^{0}(i, j)=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array} .\right.
$$

- We define the n-step transition matrix by

$$
P^{(n)}:=\left(p^{n}(i, j): i, j \in S\right)
$$

Chapman-Kolmogorov

Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \geq 1$:

$$
P^{(n+m)}=P^{(n)} \cdot P^{(m)}
$$

Chapman-Kolmogorov

Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \geq 1$:

$$
P^{(n+m)}=P^{(n)} \cdot P^{(m)}
$$

In particular, for all $n \geq 1$,

$$
P^{(n)}=P \cdot P^{(n-1)}=\cdots=P^{n}
$$

Chapman-Kolmogorov

Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \geq 1$:

$$
P^{(n+m)}=P^{(n)} \cdot P^{(m)}
$$

In particular, for all $n \geq 1$,

$$
P^{(n)}=P \cdot P^{(n-1)}=\cdots=P^{n} .
$$

Moral: n-step transition probabilities are computed using matrix multiplications.

Chapman-Kolmogorov

Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \geq 1$:

$$
P^{(n+m)}=P^{(n)} \cdot P^{(m)}
$$

In particular, for all $n \geq 1$,

$$
P^{(n)}=P \cdot P^{(n-1)}=\cdots=P^{n} .
$$

Moral: n-step transition probabilities are computed using matrix multiplications.

- Let $\mu_{n}:=\left(\mu_{n}(i): i \in S\right)$ denote the distribution of X_{n} :

$$
\mu_{n}(i):=P\left(X_{n}=i\right) .
$$

Chapman-Kolmogorov

Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \geq 1$:

$$
P^{(n+m)}=P^{(n)} \cdot P^{(m)}
$$

In particular, for all $n \geq 1$,

$$
P^{(n)}=P \cdot P^{(n-1)}=\cdots=P^{n} .
$$

Moral: n-step transition probabilities are computed using matrix multiplications.

- Let $\mu_{n}:=\left(\mu_{n}(i): i \in S\right)$ denote the distribution of X_{n} :

$$
\mu_{n}(i):=P\left(X_{n}=i\right) .
$$

Proposition: We have

$$
\mu_{m+n}=\mu_{m} P^{n}, \quad \text { and } \quad \mu_{n}=\mu_{0} P^{n} .
$$

Chapman-Kolmogorov

Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \geq 1$:

$$
P^{(n+m)}=P^{(n)} \cdot P^{(m)}
$$

In particular, for all $n \geq 1$,

$$
P^{(n)}=P \cdot P^{(n-1)}=\cdots=P^{n} .
$$

Moral: n-step transition probabilities are computed using matrix multiplications.

- Let $\mu_{n}:=\left(\mu_{n}(i): i \in S\right)$ denote the distribution of X_{n} :

$$
\mu_{n}(i):=P\left(X_{n}=i\right) .
$$

Proposition: We have

$$
\mu_{m+n}=\mu_{m} P^{n}, \quad \text { and } \quad \mu_{n}=\mu_{0} P^{n}
$$

Moral: Distributional computations for Markov Chains are just matrix multiplications.

Reducibility

- Reducibility:
- A state $j \in S$ is said to be accessible from $i \in S$ (denotde $i \rightarrow j$) if a system started in state i has a non-zero probability of transitioning into state j at some point.

Reducibility

- Reducibility:
- A state $j \in S$ is said to be accessible from $i \in S$ (denotde $i \rightarrow j$) if a system started in state i has a non-zero probability of transitioning into state j at some point.
- A state $i \in S$ is said to communicate with state $j \in S$ (denoted $i \leftrightarrow j$) if both $i \rightarrow j$ and $j \rightarrow i$.

Reducibility

- Reducibility:
- A state $j \in S$ is said to be accessible from $i \in S$ (denotde $i \rightarrow j$) if a system started in state i has a non-zero probability of transitioning into state j at some point.
- A state $i \in S$ is said to communicate with state $j \in S$ (denoted $i \leftrightarrow j$) if both $i \rightarrow j$ and $j \rightarrow i$.
Note: Communication is an equivalence relation.

Reducibility

- Reducibility:
- A state $j \in S$ is said to be accessible from $i \in S$ (denotde $i \rightarrow j$) if a system started in state i has a non-zero probability of transitioning into state j at some point.
- A state $i \in S$ is said to communicate with state $j \in S$ (denoted $i \leftrightarrow j$) if both $i \rightarrow j$ and $j \rightarrow i$.
Note: Communication is an equivalence relation.
A Markov chain is said to be irreducible if its state space is a single communicating class.

Transience and periodicity

- Transience:
- A state $i \in S$ is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.

Transience and periodicity

- Transience:
- A state $i \in S$ is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is recurrent if it is not transient.

Transience and periodicity

- Transience:
- A state $i \in S$ is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is recurrent if it is not transient.
- The recurrence time of state $i \in S$ is $T_{i}:=\min \left\{n \geq 1: X_{n}=i\right.$ given $\left.X_{0}=i\right\}$.

Transience and periodicity

- Transience:
- A state $i \in S$ is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is recurrent if it is not transient.
- The recurrence time of state $i \in S$ is $T_{i}:=\min \left\{n \geq 1: X_{n}=i\right.$ given $\left.X_{0}=i\right\}$.
- Note: $i \in S$ is recurrent iff $P\left(T_{i}<\infty\right)=1$.

Transience and periodicity

- Transience:
- A state $i \in S$ is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is recurrent if it is not transient.
- The recurrence time of state $i \in S$ is $T_{i}:=\min \left\{n \geq 1: X_{n}=i\right.$ given $\left.X_{0}=i\right\}$.
- Note: $i \in S$ is recurrent iff $P\left(T_{i}<\infty\right)=1$.
- A recurrent state $i \in S$ is positive recurrent if $E\left[T_{i}\right]<\infty$.
- Periodicity:
- A state $i \in S$ has period k if

$$
k=\operatorname{gcd}\left\{n>0: P\left(X_{n}=i \mid X_{0}=i\right)>0\right\} .
$$

Transience and periodicity

- Transience:
- A state $i \in S$ is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is recurrent if it is not transient.
- The recurrence time of state $i \in S$ is $T_{i}:=\min \left\{n \geq 1: X_{n}=i\right.$ given $\left.X_{0}=i\right\}$.
- Note: $i \in S$ is recurrent iff $P\left(T_{i}<\infty\right)=1$.
- A recurrent state $i \in S$ is positive recurrent if $E\left[T_{i}\right]<\infty$.
- Periodicity:
- A state $i \in S$ has period k if

$$
k=\operatorname{gcd}\left\{n>0: P\left(X_{n}=i \mid X_{0}=i\right)>0\right\} .
$$

For example, suppose you start in state i and can only return to i at time $6,8,10,12$, etc.. Then the period of i is 2 .

Transience and periodicity

- Transience:
- A state $i \in S$ is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is recurrent if it is not transient.
- The recurrence time of state $i \in S$ is $T_{i}:=\min \left\{n \geq 1: X_{n}=i\right.$ given $\left.X_{0}=i\right\}$.
- Note: $i \in S$ is recurrent iff $P\left(T_{i}<\infty\right)=1$.
- A recurrent state $i \in S$ is positive recurrent if $E\left[T_{i}\right]<\infty$.
- Periodicity:
- A state $i \in S$ has period k if

$$
k=\operatorname{gcd}\left\{n>0: P\left(X_{n}=i \mid X_{0}=i\right)>0\right\} .
$$

For example, suppose you start in state i and can only return to i at time $6,8,10,12$, etc.. Then the period of i is 2 .

- If $k=1$, then the state is said to be aperiodic.

Transience and periodicity

- Transience:
- A state $i \in S$ is said to be transient if, given that we start in state i, there is a non-zero probability that we will never return to i.
- A state is recurrent if it is not transient.
- The recurrence time of state $i \in S$ is $T_{i}:=\min \left\{n \geq 1: X_{n}=i\right.$ given $\left.X_{0}=i\right\}$.
- Note: $i \in S$ is recurrent iff $P\left(T_{i}<\infty\right)=1$.
- A recurrent state $i \in S$ is positive recurrent if $E\left[T_{i}\right]<\infty$.
- Periodicity:
- A state $i \in S$ has period k if

$$
k=\operatorname{gcd}\left\{n>0: P\left(X_{n}=i \mid X_{0}=i\right)>0\right\} .
$$

For example, suppose you start in state i and can only return to i at time $6,8,10,12$, etc.. Then the period of i is 2 .

- If $k=1$, then the state is said to be aperiodic.

A Markov chain is aperiodic if every state is aperiodic.

Limiting behavior

Limiting behavior of Markov chains: What happens to $p^{n}(i, j)$ as $n \rightarrow \infty$?

Limiting behavior

Limiting behavior of Markov chains: What happens to $p^{n}(i, j)$ as $n \rightarrow \infty$?
Example: (The two-state Markov chain)

If $(a, b) \neq(0,0)$, we have (exercise):

$$
P^{n}=\frac{1}{a+b}\left(\begin{array}{ll}
b & a \\
b & a
\end{array}\right)+\frac{(1-a-b)^{n}}{a+b}\left(\begin{array}{cc}
a & -a \\
-b & b
\end{array}\right)
$$

Limiting behavior

Limiting behavior of Markov chains: What happens to $p^{n}(i, j)$ as $n \rightarrow \infty$?
Example: (The two-state Markov chain)

If $(a, b) \neq(0,0)$, we have (exercise):

$$
P^{n}=\frac{1}{a+b}\left(\begin{array}{ll}
b & a \\
b & a
\end{array}\right)+\frac{(1-a-b)^{n}}{a+b}\left(\begin{array}{cc}
a & -a \\
-b & b
\end{array}\right) .
$$

Thus, if $(a, b) \neq(0,0)$ and $(a, b) \neq(1,1)$, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} p^{n}(0,0)=\lim _{n \rightarrow \infty} p^{n}(1,0)=\frac{b}{a+b} \\
& \lim _{n \rightarrow \infty} p^{n}(0,1)=\lim _{n \rightarrow \infty} p^{n}(1,1)=\frac{a}{a+b}
\end{aligned}
$$

Limiting behavior

Limiting behavior of Markov chains: What happens to $p^{n}(i, j)$ as $n \rightarrow \infty$?
Example: (The two-state Markov chain)

If $(a, b) \neq(0,0)$, we have (exercise):

$$
P^{n}=\frac{1}{a+b}\left(\begin{array}{ll}
b & a \\
b & a
\end{array}\right)+\frac{(1-a-b)^{n}}{a+b}\left(\begin{array}{cc}
a & -a \\
-b & b
\end{array}\right) .
$$

Thus, if $(a, b) \neq(0,0)$ and $(a, b) \neq(1,1)$, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} p^{n}(0,0)=\lim _{n \rightarrow \infty} p^{n}(1,0)=\frac{b}{a+b} \\
& \lim _{n \rightarrow \infty} p^{n}(0,1)=\lim _{n \rightarrow \infty} p^{n}(1,1)=\frac{a}{a+b} .
\end{aligned}
$$

Thus, the chain has a limiting distribution.

Limiting behavior

Limiting behavior of Markov chains: What happens to $p^{n}(i, j)$ as $n \rightarrow \infty$?
Example: (The two-state Markov chain)

If $(a, b) \neq(0,0)$, we have (exercise):

$$
P^{n}=\frac{1}{a+b}\left(\begin{array}{ll}
b & a \\
b & a
\end{array}\right)+\frac{(1-a-b)^{n}}{a+b}\left(\begin{array}{cc}
a & -a \\
-b & b
\end{array}\right) .
$$

Thus, if $(a, b) \neq(0,0)$ and $(a, b) \neq(1,1)$, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} p^{n}(0,0)=\lim _{n \rightarrow \infty} p^{n}(1,0)=\frac{b}{a+b} \\
& \lim _{n \rightarrow \infty} p^{n}(0,1)=\lim _{n \rightarrow \infty} p^{n}(1,1)=\frac{a}{a+b} .
\end{aligned}
$$

Thus, the chain has a limiting distribution.
The limiting distribution is independent of the initial state.

Stationary distribution

Recall: $\mu_{n+1}=\mu_{n} P$.

Stationary distribution

Recall: $\mu_{n+1}=\mu_{n} P$.
A vector $\pi=(\pi(i): i \in S)$ is said to be a stationary distribution for a Markov chain $\left\{X_{n}: n \geq 0\right\}$ if
(1) $0 \leq \pi_{i} \leq 1 \forall i \in S$.
(2) $\sum_{i \in S} \pi_{i}=1$.
(3) $\pi=\pi P$, where P is the transition probability matrix of the Markov chain.

Stationary distribution

Recall: $\mu_{n+1}=\mu_{n} P$.
A vector $\pi=(\pi(i): i \in S)$ is said to be a stationary distribution for a Markov chain $\left\{X_{n}: n \geq 0\right\}$ if
(1) $0 \leq \pi_{i} \leq 1 \forall i \in S$.
(2) $\sum_{i \in S} \pi_{i}=1$.
(3) $\pi=\pi P$, where P is the transition probability matrix of the Markov chain.
Remark: In general, a stationary distribution may not exist or be unique.

Stationary distribution

Recall: $\mu_{n+1}=\mu_{n} P$.
A vector $\pi=(\pi(i): i \in S)$ is said to be a stationary distribution for a Markov chain $\left\{X_{n}: n \geq 0\right\}$ if
(1) $0 \leq \pi_{i} \leq 1 \forall i \in S$.
(2) $\sum_{i \in S} \pi_{i}=1$.
(3) $\pi=\pi P$, where P is the transition probability matrix of the Markov chain.
Remark: In general, a stationary distribution may not exist or be unique.
Theorem: Let $\left\{X_{n}: n \geq 0\right\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then

Stationary distribution

Recall: $\mu_{n+1}=\mu_{n} P$.
A vector $\pi=(\pi(i): i \in S)$ is said to be a stationary distribution for a Markov chain $\left\{X_{n}: n \geq 0\right\}$ if
(1) $0 \leq \pi_{i} \leq 1 \forall i \in S$.
(2) $\sum_{i \in S} \pi_{i}=1$.
(3) $\pi=\pi P$, where P is the transition probability matrix of the Markov chain.
Remark: In general, a stationary distribution may not exist or be unique.
Theorem: Let $\left\{X_{n}: n \geq 0\right\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then
(1) The chain has a unique stationary distribution π.

Stationary distribution

Recall: $\mu_{n+1}=\mu_{n} P$.
A vector $\pi=(\pi(i): i \in S)$ is said to be a stationary distribution for a Markov chain $\left\{X_{n}: n \geq 0\right\}$ if
(1) $0 \leq \pi_{i} \leq 1 \forall i \in S$.
(2) $\sum_{i \in S} \pi_{i}=1$.
(3) $\pi=\pi P$, where P is the transition probability matrix of the Markov chain.
Remark: In general, a stationary distribution may not exist or be unique.
Theorem: Let $\left\{X_{n}: n \geq 0\right\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then
(1) The chain has a unique stationary distribution π.
(2) For all $i \in S, \lim _{n \rightarrow \infty} P\left(X_{n}=i\right)=\pi(i)$.

Stationary distribution

Recall: $\mu_{n+1}=\mu_{n} P$.
A vector $\pi=(\pi(i): i \in S)$ is said to be a stationary distribution for a Markov chain $\left\{X_{n}: n \geq 0\right\}$ if
(1) $0 \leq \pi_{i} \leq 1 \forall i \in S$.
(2) $\sum_{i \in S} \pi_{i}=1$.
(3) $\pi=\pi P$, where P is the transition probability matrix of the Markov chain.
Remark: In general, a stationary distribution may not exist or be unique.
Theorem: Let $\left\{X_{n}: n \geq 0\right\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then
(1) The chain has a unique stationary distribution π.
(2) For all $i \in S, \lim _{n \rightarrow \infty} P\left(X_{n}=i\right)=\pi(i)$.
(3) $\pi_{i}=\frac{1}{E\left[T_{i}\right]}$.

Stationary distribution

Recall: $\mu_{n+1}=\mu_{n} P$.
A vector $\pi=(\pi(i): i \in S)$ is said to be a stationary distribution for a Markov chain $\left\{X_{n}: n \geq 0\right\}$ if
(1) $0 \leq \pi_{i} \leq 1 \forall i \in S$.
(2) $\sum_{i \in S} \pi_{i}=1$.
(3) $\pi=\pi P$, where P is the transition probability matrix of the Markov chain.
Remark: In general, a stationary distribution may not exist or be unique.
Theorem: Let $\left\{X_{n}: n \geq 0\right\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then
(1) The chain has a unique stationary distribution π.
(2) For all $i \in S, \lim _{n \rightarrow \infty} P\left(X_{n}=i\right)=\pi(i)$.
(3) $\pi_{i}=\frac{1}{E\left[T_{i}\right]}$.
$\pi(i)$ can be interpreted as the average proportion of time spent by the chain in state i.

