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Hidden Markov Models

Recall: a (discrete time homogeneous) Markov chain (Xn)n≥0 is a
process that satis�es:

P (Xn+1 = j|X0 = i0, . . . , Xn−1 = in−1, Xn = i) = P (Xn+1 = j|Xn = i)

= P (X1 = j|X0 = i)

=: p(i, j).

A Hidden Markov Model has two components:

1 A Markov chain that describes the state of the system and is

unobserved.

2 An observed process where each output depends on the state

of the chain.
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Hidden Markov Models (cont.)

More precisely, a Hidden Markov Model consists of:

1 A Makov chain (Zt : t = 1, . . . , T ) with states

S := {s1, . . . , s|S|}, say:

P (Zt+1 = sj |Zt = si) = Aij .

2 An observation process (Xt : t = 1, . . . , T ) taking values in

V := {v1, . . . , v|V |} such that

P (Xt = vj |Zt = si) = Bij .

Remarks:
1 The observed variable Xt depends only on Zt, the state of the

Markov chain at time t.
2 The output is a random function of the current state.
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Examples

A HMM with states S = {x1, x2, x3} and possible observations

V = {y1, y2, y3, y4}.

Source: Wikipedia.

a's are the state transition probabilities.

b's are the output probabilities.
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Examples (cont.)

Examples of applications:

Recognizing human facial expression from sequences of images

(see e.g. Schmidt et al, 2010).

Speech recognition systems (see e.g. Gales and Young, 2007)

Gales and Young, 2007.

Longitudinal comparisons in medical studies (see e.g. Scott et

al. 2005).

Many applications in �nance (e.g. pricing options, valuation of

life insurance policies, credit risk modeling, etc.).

etc..
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Three problems

Three (closely related) important problems naturally arise when

working with HMM:

1 What is the probability of a given observed sequence?

2 What is the most likely series of states that generated a given

observed sequence?

3 What are the state transition probabilities and the observation

probabilities of the model (i.e., how can we estimate the

parameters of the model)?
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Probability of an observed sequence

Suppose the parameters of the model are known.

Let x = (x1, . . . , xT ) ∈ V T be a given observed sequence.

What is P (x;A,B)?

Conditioning on the hidden states, we obtain:

P (x;A,B) =
∑
z∈ST

P (x|z;A,B)P (z;A,B)

=
∑
z∈ST

T∏
i=1

P (xi|zi;B) ·
T∏
i=1

P (zi|zi−1;A)

=
∑
z∈ST

T∏
i=1

Bzi,xi ·
T∏
i=1

Azi−1,zi .

Problem: Although the previous expression is simple, it involves

summing over a set of size |S|T , which is generally too

computationally intensive.
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Probability of an observed sequence (cont.)

We can compute P (x;A,B) e�ciently using dynamic programming.

Idea: avoid computing the same quantities multiple times!

Let αi(t) := P (x1, x2, . . . , xt, zt = si;A,B).

The Forward Procedure for computing αi(t)

1 Initialize αi(0) := A0,i, i = 1, . . . , |S|.
2 Recursion: αj(t) :=

∑|S|
i=1 αi(t− 1)AijBj,xt , j = 1, . . . , |S|,

t = 1, . . . , T .

Now, P (x;A,B) = P (x1, . . . , xT ;A,B)

=

|S|∑
i=1

P (x1, . . . , xT , zT = si;A,B)

=

|S|∑
i=1

αi(T ).

Complexity is now O(|S| · T ) instead of O(|S|T )!
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Inferring the hidden states

One of the most natural question one can ask about a HMM is:

what are the mostly likely states that generated the observations?

In other words, we would like to compute:

argmax
z∈ST

P (z|x;A,B).

Using Bayes' theorem:

argmax
z∈ST

P (z|x;A,B) = argmax
z∈ST

P (x|z;A,B)P (z;A)

P (x;A,B)

= argmax
z∈ST

P (x|z;A,B)P (z;A)

since the denominator does not depend on z.
Note: There are |S|T possibilities for z so there is no hope of

examining all of them to pick the optimal one in practice.
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The Viterbi algorithm

The Viterbi algorithm is a dynamic programming algorithm that

can be used to e�ciently compute the most likely path for the

states, given a sequence of observations x ∈ V T .

Let vi(t) denote the most probable path that ends in state si at
time t:

vi(t) := max
zt,...,zt−1

P (z1, . . . , zt−1, zt = si, x1, . . . , xt;A,B).

Key observation: We have

vj(t) = max
1≤i≤|S|

vi(t− 1)AijBj,xt .

In other words:

Best Path at t that end at j

= max
1≤i≤|S|

(Best Path at t− 1 that end at i)

× (Go from i to j)

× (Observe xt in state sj).

10/12



The Viterbi algorithm

The Viterbi algorithm is a dynamic programming algorithm that

can be used to e�ciently compute the most likely path for the

states, given a sequence of observations x ∈ V T .

Let vi(t) denote the most probable path that ends in state si at
time t:

vi(t) := max
zt,...,zt−1

P (z1, . . . , zt−1, zt = si, x1, . . . , xt;A,B).

Key observation: We have

vj(t) = max
1≤i≤|S|

vi(t− 1)AijBj,xt .

In other words:

Best Path at t that end at j

= max
1≤i≤|S|

(Best Path at t− 1 that end at i)

× (Go from i to j)

× (Observe xt in state sj).

10/12



The Viterbi algorithm

The Viterbi algorithm is a dynamic programming algorithm that

can be used to e�ciently compute the most likely path for the

states, given a sequence of observations x ∈ V T .

Let vi(t) denote the most probable path that ends in state si at
time t:

vi(t) := max
zt,...,zt−1

P (z1, . . . , zt−1, zt = si, x1, . . . , xt;A,B).

Key observation: We have

vj(t) = max
1≤i≤|S|

vi(t− 1)AijBj,xt .

In other words:

Best Path at t that end at j

= max
1≤i≤|S|

(Best Path at t− 1 that end at i)

× (Go from i to j)

× (Observe xt in state sj).

10/12



The Viterbi algorithm

The Viterbi algorithm is a dynamic programming algorithm that

can be used to e�ciently compute the most likely path for the

states, given a sequence of observations x ∈ V T .

Let vi(t) denote the most probable path that ends in state si at
time t:

vi(t) := max
zt,...,zt−1

P (z1, . . . , zt−1, zt = si, x1, . . . , xt;A,B).

Key observation: We have

vj(t) = max
1≤i≤|S|

vi(t− 1)AijBj,xt .

In other words:

Best Path at t that end at j

= max
1≤i≤|S|

(Best Path at t− 1 that end at i)

× (Go from i to j)

× (Observe xt in state sj).

10/12



The Viterbi algorithm

The Viterbi algorithm:

1 Initialize vi(1) := πiBi,x1 , i = 1, . . . , |S|, where πi is the initial

distribution of the Markov chain.

2 Compute vi(t) recursively for i = 1, . . . , S and t = 1, . . . , T .

3 Finally, the most probable path is the path corresponding to

max
1≤i≤|S|

vi(T ).
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Estimating A, B, and π

So far, we assumed the parameters A, B, and π of the HMM

were known.

We now turn to the estimation of these parameters.

Let θ := (A,B, π).

We know how to compute:

1 P (x|θ) Forward algorithm.

2 P (z|x; θ) Viterbi algorithm.

We now want

argmax
θ

P (x|θ),

i.e., the set of parameters for which the observed values are most

likely to be obtained.

Note: if we could observe z, then we could easily compute

A,B, π.

We solve the problem using the EM algorithm.

12/12



Estimating A, B, and π

So far, we assumed the parameters A, B, and π of the HMM

were known.

We now turn to the estimation of these parameters.

Let θ := (A,B, π).

We know how to compute:

1 P (x|θ) Forward algorithm.

2 P (z|x; θ) Viterbi algorithm.

We now want

argmax
θ

P (x|θ),

i.e., the set of parameters for which the observed values are most

likely to be obtained.

Note: if we could observe z, then we could easily compute

A,B, π.

We solve the problem using the EM algorithm.

12/12



Estimating A, B, and π

So far, we assumed the parameters A, B, and π of the HMM

were known.

We now turn to the estimation of these parameters.

Let θ := (A,B, π).

We know how to compute:

1 P (x|θ) Forward algorithm.

2 P (z|x; θ) Viterbi algorithm.

We now want

argmax
θ

P (x|θ),

i.e., the set of parameters for which the observed values are most

likely to be obtained.

Note: if we could observe z, then we could easily compute

A,B, π.

We solve the problem using the EM algorithm.

12/12



Estimating A, B, and π

So far, we assumed the parameters A, B, and π of the HMM

were known.

We now turn to the estimation of these parameters.

Let θ := (A,B, π).

We know how to compute:

1 P (x|θ) Forward algorithm.

2 P (z|x; θ) Viterbi algorithm.

We now want

argmax
θ

P (x|θ),

i.e., the set of parameters for which the observed values are most

likely to be obtained.

Note: if we could observe z, then we could easily compute

A,B, π.

We solve the problem using the EM algorithm.

12/12



Estimating A, B, and π

So far, we assumed the parameters A, B, and π of the HMM

were known.

We now turn to the estimation of these parameters.

Let θ := (A,B, π).

We know how to compute:

1 P (x|θ) Forward algorithm.

2 P (z|x; θ) Viterbi algorithm.

We now want

argmax
θ

P (x|θ),

i.e., the set of parameters for which the observed values are most

likely to be obtained.

Note: if we could observe z, then we could easily compute

A,B, π.

We solve the problem using the EM algorithm.

12/12



Estimating A, B, and π

So far, we assumed the parameters A, B, and π of the HMM

were known.

We now turn to the estimation of these parameters.

Let θ := (A,B, π).

We know how to compute:

1 P (x|θ) Forward algorithm.

2 P (z|x; θ) Viterbi algorithm.

We now want

argmax
θ

P (x|θ),

i.e., the set of parameters for which the observed values are most

likely to be obtained.

Note: if we could observe z, then we could easily compute

A,B, π.

We solve the problem using the EM algorithm.

12/12



Estimating A, B, and π

So far, we assumed the parameters A, B, and π of the HMM

were known.

We now turn to the estimation of these parameters.

Let θ := (A,B, π).

We know how to compute:

1 P (x|θ) Forward algorithm.

2 P (z|x; θ) Viterbi algorithm.

We now want

argmax
θ

P (x|θ),

i.e., the set of parameters for which the observed values are most

likely to be obtained.

Note: if we could observe z, then we could easily compute

A,B, π.

We solve the problem using the EM algorithm.

12/12


