MATH 829: Introduction to Data Mining and Analysis Hidden Markov Models

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

May 11, 2016

$$P(X_{n+1} = j | X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i)$$

= $P(X_1 = j | X_0 = i)$
=: $p(i, j)$.

Recall: a (discrete time homogeneous) Markov chain $(X_n)_{n\geq 0}$ is a process that satisfies:

$$P(X_{n+1} = j | X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i)$$

= $P(X_1 = j | X_0 = i)$
=: $p(i, j)$.

A Hidden Markov Model has two components:

$$P(X_{n+1} = j | X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i)$$

= $P(X_1 = j | X_0 = i)$
=: $p(i, j)$.

- A Hidden Markov Model has two components:
 - A Markov chain that describes the state of the system and is unobserved.

$$P(X_{n+1} = j | X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i)$$

= $P(X_1 = j | X_0 = i)$
=: $p(i, j)$.

- A Hidden Markov Model has two components:
 - A Markov chain that describes the state of the system and is unobserved.
 - An observed process where each output depends on the state of the chain.

$$P(X_{n+1} = j | X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i)$$

= $P(X_1 = j | X_0 = i)$
=: $p(i, j)$.

- A Hidden Markov Model has two components:
 - A Markov chain that describes the state of the system and is unobserved.
 - An observed process where each output depends on the state of the chain.

More precisely, a Hidden Markov Model consists of:

More precisely, a Hidden Markov Model consists of:

• A Makov chain
$$(Z_t: t = 1, ..., T)$$
 with states $S := \{s_1, ..., s_{|S|}\}$, say:

$$P(Z_{t+1} = s_j | Z_t = s_i) = A_{ij}.$$

More precisely, a Hidden Markov Model consists of:

1 A Makov chain
$$(Z_t : t = 1, ..., T)$$
 with states
 $S := \{s_1, ..., s_{|S|}\}$, say:
 $P(Z_{t+1} = s_j | Z_t = s_i) = A_{ij}$.

② An observation process $(X_t:t=1,\ldots,T)$ taking values in $V:=\{v_1,\ldots,v_{|V|}\}$ such that

More precisely, a Hidden Markov Model consists of:

1 A Makov chain
$$(Z_t : t = 1, ..., T)$$
 with states
 $S := \{s_1, ..., s_{|S|}\}$, say:
 $P(Z_{t+1} = s_j | Z_t = s_i) = A_{ij}$.

② An observation process $(X_t:t=1,\ldots,T)$ taking values in $V:=\{v_1,\ldots,v_{|V|}\}$ such that

Remarks:

- The observed variable X_t depends only on Z_t, the state of the Markov chain at time t.
- In the output is a random function of the current state.

Examples

A HMM with states $S = \{x_1, x_2, x_3\}$ and possible observations $V = \{y_1, y_2, y_3, y_4\}.$

- *a*'s are the state transition probabilities.
- *b*'s are the output probabilities.

Examples of applications:

• Recognizing human facial expression from sequences of images (see e.g. Schmidt et al, 2010).

Examples of applications:

- Recognizing human facial expression from sequences of images (see e.g. Schmidt et al, 2010).
- Speech recognition systems (see e.g. Gales and Young, 2007)

Gales and Young, 2007.

Examples of applications:

- Recognizing human facial expression from sequences of images (see e.g. Schmidt et al, 2010).
- Speech recognition systems (see e.g. Gales and Young, 2007)

Gales and Young, 2007.

• Longitudinal comparisons in medical studies (see e.g. Scott et al. 2005).

Examples of applications:

- Recognizing human facial expression from sequences of images (see e.g. Schmidt et al, 2010).
- Speech recognition systems (see e.g. Gales and Young, 2007)

- Longitudinal comparisons in medical studies (see e.g. Scott et al. 2005).
- Many applications in finance (e.g. pricing options, valuation of life insurance policies, credit risk modeling, etc.).

[•] etc..

• What is the probability of a given observed sequence?

- What is the probability of a given observed sequence?
- What is the most likely series of states that generated a given observed sequence?

- What is the probability of a given observed sequence?
- What is the most likely series of states that generated a given observed sequence?
- What are the state transition probabilities and the observation probabilities of the model (i.e., how can we estimate the parameters of the model)?

• Suppose the parameters of the model are known.

- Suppose the parameters of the model are known.
- Let $x = (x_1, \ldots, x_T) \in V^T$ be a given observed sequence.

- Suppose the parameters of the model are known.
- Let $x = (x_1, \ldots, x_T) \in V^T$ be a given observed sequence.
- What is P(x; A, B)?

- Suppose the parameters of the model are known.
- Let $x = (x_1, \ldots, x_T) \in V^T$ be a given observed sequence.
- What is P(x; A, B)?

- Suppose the parameters of the model are known.
- Let $x = (x_1, \ldots, x_T) \in V^T$ be a given observed sequence.
- What is P(x; A, B)?

$$P(x; A, B) = \sum_{z \in S^T} P(x|z; A, B) P(z; A, B)$$

- Suppose the parameters of the model are known.
- Let $x = (x_1, \ldots, x_T) \in V^T$ be a given observed sequence.
- What is P(x; A, B)?

$$P(x; A, B) = \sum_{z \in S^T} P(x|z; A, B) P(z; A, B)$$
$$= \sum_{z \in S^T} \prod_{i=1}^T P(x_i|z_i; B) \cdot \prod_{i=1}^T P(z_i|z_{i-1}; A)$$

- Suppose the parameters of the model are known.
- Let $x = (x_1, \ldots, x_T) \in V^T$ be a given observed sequence.
- What is P(x; A, B)?

$$P(x; A, B) = \sum_{z \in S^T} P(x|z; A, B) P(z; A, B)$$

= $\sum_{z \in S^T} \prod_{i=1}^T P(x_i|z_i; B) \cdot \prod_{i=1}^T P(z_i|z_{i-1}; A)$
= $\sum_{z \in S^T} \prod_{i=1}^T B_{z_i, x_i} \cdot \prod_{i=1}^T A_{z_{i-1}, z_i}.$

- Suppose the parameters of the model are known.
- Let $x = (x_1, \ldots, x_T) \in V^T$ be a given observed sequence.
- What is P(x; A, B)?

Conditioning on the hidden states, we obtain:

$$P(x; A, B) = \sum_{z \in S^T} P(x|z; A, B) P(z; A, B)$$

= $\sum_{z \in S^T} \prod_{i=1}^T P(x_i|z_i; B) \cdot \prod_{i=1}^T P(z_i|z_{i-1}; A)$
= $\sum_{z \in S^T} \prod_{i=1}^T B_{z_i, x_i} \cdot \prod_{i=1}^T A_{z_{i-1}, z_i}.$

Problem: Although the previous expression is simple, it involves summing over a set of size $|S|^T$, which is generally too computationally intensive.

• We can compute P(x; A, B) efficiently using dynamic programming.

- \bullet We can compute P(x;A,B) efficiently using dynamic programming.
- Idea: avoid computing the same quantities multiple times!

- We can compute P(x; A, B) efficiently using dynamic programming.
- Idea: avoid computing the same quantities multiple times!
- Let $\alpha_i(t) := P(x_1, x_2, \dots, x_t, z_t = s_i; A, B).$

- We can compute P(x; A, B) efficiently using dynamic programming.
- Idea: avoid computing the same quantities multiple times!
- Let $\alpha_i(t) := P(x_1, x_2, \dots, x_t, z_t = s_i; A, B).$

The Forward Procedure for computing $\alpha_i(t)$

1 Initialize
$$\alpha_i(0) := A_{0,i}, i = 1, ..., |S|.$$

2 Recursion:
$$\alpha_j(t) := \sum_{i=1}^{|S|} \alpha_i(t-1) A_{ij} B_{j,x_t}, \ j = 1, \dots, |S|, \ t = 1, \dots, T.$$

- We can compute P(x; A, B) efficiently using dynamic programming.
- Idea: avoid computing the same quantities multiple times!
- Let $\alpha_i(t) := P(x_1, x_2, \dots, x_t, z_t = s_i; A, B).$

The Forward Procedure for computing $\alpha_i(t)$

1 Initialize
$$\alpha_i(0) := A_{0,i}, i = 1, ..., |S|.$$

2 Recursion: $\alpha_j(t) := \sum_{i=1}^{|S|} \alpha_i(t-1) A_{ij} B_{j,x_t}, \ j = 1, \dots, |S|, \ t = 1, \dots, T.$

Now,

$$P(x; A, B) = P(x_1, \dots, x_T; A, B)$$

= $\sum_{i=1}^{|S|} P(x_1, \dots, x_T, z_T = s_i; A, B)$
= $\sum_{i=1}^{|S|} \alpha_i(T).$

- We can compute P(x; A, B) efficiently using dynamic programming.
- Idea: avoid computing the same quantities multiple times!
- Let $\alpha_i(t) := P(x_1, x_2, \dots, x_t, z_t = s_i; A, B).$

The Forward Procedure for computing $\alpha_i(t)$

1 Initialize
$$\alpha_i(0) := A_{0,i}, i = 1, ..., |S|.$$

2 Recursion: $\alpha_j(t) := \sum_{i=1}^{|S|} \alpha_i(t-1) A_{ij} B_{j,x_t}, \ j = 1, \dots, |S|, \ t = 1, \dots, T.$

Now,

$$P(x; A, B) = P(x_1, \dots, x_T; A, B)$$

= $\sum_{i=1}^{|S|} P(x_1, \dots, x_T, z_T = s_i; A, B)$

$$=\sum_{i=1}^{|S|} \alpha_i(T).$$

Complexity is now $O(|S| \cdot T)$ instead of $O(|S|^T)!$

• One of the most natural question one can ask about a HMM is: what are the mostly likely states that generated the observations?

Inferring the hidden states

One of the most natural question one can ask about a HMM is: what are the mostly likely states that generated the observations?
In other words, we would like to compute:

 $\mathop{\mathrm{argmax}}_{z\in S^T} P(z|x;A,B).$

Inferring the hidden states

One of the most natural question one can ask about a HMM is: what are the mostly likely states that generated the observations?
In other words, we would like to compute:

 $\mathop{\mathrm{argmax}}_{z\in S^T} P(z|x;A,B).$

• Using Bayes' theorem:

Inferring the hidden states

One of the most natural question one can ask about a HMM is: what are the mostly likely states that generated the observations?
In other words, we would like to compute:

 $\mathop{\mathrm{argmax}}_{z \in S^T} P(z|x;A,B).$

• Using Bayes' theorem:

$$\operatorname*{argmax}_{z \in S^T} P(z|x;A,B) = \operatorname*{argmax}_{z \in S^T} \frac{P(x|z;A,B)P(z;A)}{P(x;A,B)}$$

Inferring the hidden states

One of the most natural question one can ask about a HMM is: what are the mostly likely states that generated the observations?
In other words, we would like to compute:

 $\operatorname*{argmax}_{z \in S^T} P(z|x; A, B).$

• Using Bayes' theorem:

$$\begin{aligned} \operatorname*{argmax}_{z \in S^T} P(z|x; A, B) &= \operatorname*{argmax}_{z \in S^T} \frac{P(x|z; A, B) P(z; A)}{P(x; A, B)} \\ &= \operatorname*{argmax}_{z \in S^T} P(x|z; A, B) P(z; A) \end{aligned}$$

since the denominator does not depend on z.

Inferring the hidden states

One of the most natural question one can ask about a HMM is: what are the mostly likely states that generated the observations?
In other words, we would like to compute:

$$\operatorname*{argmax}_{z \in S^T} P(z|x; A, B).$$

• Using Bayes' theorem:

$$\begin{aligned} \operatorname*{argmax}_{z \in S^T} P(z|x; A, B) &= \operatorname*{argmax}_{z \in S^T} \frac{P(x|z; A, B) P(z; A)}{P(x; A, B)} \\ &= \operatorname*{argmax}_{z \in S^T} P(x|z; A, B) P(z; A) \end{aligned}$$

since the denominator does not depend on z.

• Note: There are $|S|^T$ possibilities for z so there is no hope of examining all of them to pick the optimal one in practice.

• The Viterbi algorithm is a dynamic programming algorithm that can be used to efficiently compute the most likely path for the states, given a sequence of observations $x \in V^T$.

• The Viterbi algorithm is a dynamic programming algorithm that can be used to efficiently compute the most likely path for the states, given a sequence of observations $x \in V^T$.

• Let $v_i(t)$ denote the most probable path that ends in state s_i at time t:

$$v_i(t) := \max_{z_t,\dots,z_{t-1}} P(z_1,\dots,z_{t-1},z_t = s_i,x_1,\dots,x_t;A,B).$$

• The Viterbi algorithm is a dynamic programming algorithm that can be used to efficiently compute the most likely path for the states, given a sequence of observations $x \in V^T$.

• Let $v_i(t)$ denote the most probable path that ends in state s_i at time t:

$$v_i(t) := \max_{z_t, \dots, z_{t-1}} P(z_1, \dots, z_{t-1}, z_t = s_i, x_1, \dots, x_t; A, B).$$

Key observation: We have

$$v_j(t) = \max_{1 \le i \le |S|} v_i(t-1) A_{ij} B_{j,x_t}.$$

• The Viterbi algorithm is a dynamic programming algorithm that can be used to efficiently compute the most likely path for the states, given a sequence of observations $x \in V^T$.

• Let $v_i(t)$ denote the most probable path that ends in state s_i at time t:

$$v_i(t) := \max_{z_t, \dots, z_{t-1}} P(z_1, \dots, z_{t-1}, z_t = s_i, x_1, \dots, x_t; A, B).$$

Key observation: We have

$$v_j(t) = \max_{1 \le i \le |S|} v_i(t-1) A_{ij} B_{j,x_t}.$$

In other words:

Best Path at t that end at j $= \max_{1 \le i \le |S|} (\text{Best Path at } t - 1 \text{ that end at } i)$ × (Go from i to j) × (Observe x_t in state s_j).

Initialize $v_i(1) := \pi_i B_{i,x_1}$, i = 1, ..., |S|, where π_i is the *initial* distribution of the Markov chain.

Initialize $v_i(1) := \pi_i B_{i,x_1}$, i = 1, ..., |S|, where π_i is the *initial* distribution of the Markov chain.

2 Compute $v_i(t)$ recursively for $i = 1, \ldots, S$ and $t = 1, \ldots, T$.

- Initialize $v_i(1) := \pi_i B_{i,x_1}$, i = 1, ..., |S|, where π_i is the *initial* distribution of the Markov chain.
- 2 Compute $v_i(t)$ recursively for $i = 1, \ldots, S$ and $t = 1, \ldots, T$.
- Finally, the most probable path is the path corresponding to

$$\max_{1 \le i \le |S|} v_i(T).$$

 \bullet So far, we assumed the parameters A,~B, and π of the HMM were known.

 \bullet So far, we assumed the parameters A,~B, and π of the HMM were known.

• We now turn to the estimation of these parameters.

 \bullet So far, we assumed the parameters A,~B, and π of the HMM were known.

- We now turn to the estimation of these parameters.
- Let $\theta := (A, B, \pi)$.

 \bullet So far, we assumed the parameters A,~B, and π of the HMM were known.

- We now turn to the estimation of these parameters.
- Let $\theta := (A, B, \pi)$.
- We know how to compute:
 - $P(x|\theta)$ Forward algorithm.
 - **2** $P(z|x;\theta)$ Viterbi algorithm.

 \bullet So far, we assumed the parameters $A,~B,~{\rm and}~\pi$ of the HMM were known.

- We now turn to the estimation of these parameters.
- Let $\theta := (A, B, \pi)$.
- We know how to compute:
 - $P(x|\theta)$ Forward algorithm.
 - **2** $P(z|x;\theta)$ Viterbi algorithm.
- We now want

```
\operatorname*{argmax}_{\theta} P(x|\theta),
```

i.e., the set of parameters for which the observed values are most likely to be obtained.

 \bullet So far, we assumed the parameters A,~B, and π of the HMM were known.

- We now turn to the estimation of these parameters.
- Let $\theta := (A, B, \pi)$.
- We know how to compute:
 - $P(x|\theta)$ Forward algorithm.
 - **2** $P(z|x;\theta)$ Viterbi algorithm.
- We now want

```
\operatorname*{argmax}_{\theta} P(x|\theta),
```

i.e., the set of parameters for which the observed values are most likely to be obtained.

• Note: if we could observe z, then we could easily compute $A,B,\pi.$

 \bullet So far, we assumed the parameters A,~B, and π of the HMM were known.

- We now turn to the estimation of these parameters.
- Let $\theta := (A, B, \pi)$.
- We know how to compute:
 - $P(x|\theta)$ Forward algorithm.
 - **2** $P(z|x;\theta)$ Viterbi algorithm.
- We now want

```
\operatorname*{argmax}_{\theta} P(x|\theta),
```

i.e., the set of parameters for which the observed values are most likely to be obtained.

• Note: if we could observe z, then we could easily compute $A,B,\pi.$

• We solve the problem using the EM algorithm.