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Statistical hypothesis testing

Suppose we have a linear model for some data:

Y = β0 + β1X1 + · · ·+ βpXp + ε.

An important problem is to identify which variables are really

useful in predicting Y .

We want to decide if βi = 0 or not with some level of

con�dence.

Also want to test if groups of coe�cients {βik : k = 1, . . . , l}
are zero.
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Statistical hypothesis testing (cont.)

Recall: to do a statistical test:

1 State a null hypothesis H0 and an alternative hypothesis H1.

2 Construct an appropriate test statistics.

3 Derive the distribution of the test statistic under the null

hypothesis.

4 Select a signi�cance level α (typically 5% or 1%).

5 Compute the test statistics and decide if the null hypothesis is

rejected at the given signi�cance level.
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Example

Example: Suppose X ∼ N(µ, 1) with µ unknown. We want to

test:

H0 : µ = 0

H1 : µ 6= 0.

We have an iid sample X1, . . . , Xn ∼ N(µ, 1).

Recall: if X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) are independent,

then X + Y ∼ N(µ1 + µ2, σ
2
1 + σ22).

Therefore, under H0, we have

µ̂ =
1

n

n∑
i=1

Xi ∼ N(0,
1

n
).

Test statistics:
√
n · µ̂ ∼ N(0, 1).

Suppose we observed:
√
nµ̂ = k.

We compute:
P (−zα ≤

√
nµ̂ ≤ zα) = P (−zα ≤ N(0, 1) ≤ zα) = 1− α.

Reject the null hypothesis if k 6∈ [−zα, zα].
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Example (cont.)

For example, suppose: α = 0.05,
√
nµ̂ = 2.2.

If Z ∼ N(0, 1), then

P (−1.96 ≤ Z ≤ 1.96) = 0.95

Therefore, it is very unlikely to observe
√
nµ̂ = 2.2 if µ = 0. We

reject the null hypothesis.

In fact, P (−2.2 ≤ Z ≤ 2.2) ≈ 0.972. So our p-value is 0.028.
Type I error: H0 true, but rejected → False positive. (Controlled

by the level α).
Type II error: H0 false, but not rejected → False negative.

(Power of the test).
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Testing if coe�cients are zero

In practice, we often include unnecessary variables in linear

models.

These variables bias our estimator, and can lead to poor

performance.

Need ways of identifying a �good� set of predictors.

We now discuss a classical approach that uses statistical tests.

Before, we tested if the mean of a N(µ, 1) is zero:

H0 : µ = 0

H1 : µ 6= 0.

assuming σ2 = 1 is known. What if the variance is unknown?

Sample variance:

s2 =
1

n− 1

n∑
i=1

(xi − x)2, x =
1

n

n∑
i=1

xi.
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Testing if coe�cients are zero (cont.)

In general, suppose X ∼ N(µ, σ2) with σ2 known and we want to

test

H0 : µ = µ0

H1 : µ 6= µ0.

Under the H0 hypothesis, we have

X :=
1

n

n∑
i=1

Xi ∼ N
(
µ0,

σ2

n

)
Therefore, we use the test statistic

Z =
X − µ0
σ/
√
n
∼ N(0, 1).

If the variance is unknown, we replace σ by its sample version s

T =
X − µ0
s/
√
n
∼ tn−1.
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Review: the student distribution

The student tν distribution with ν degrees of freedom:

fν(t) =
Γ
(
ν+1
2

)
√
νπ Γ

(
ν
2

) (1 +
t2

ν

)− ν+1
2

,

where Γ is the Gamma function.

When X1, . . . , Xn are iid N(µ, σ2), then

X − µ
s/
√
n
∼ tn−1.
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Testing if coe�cients are zero (cont.)

Back to testing regression coe�cients: suppose

yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + εi,

where (xij) is a �xed matrix, and εi are iid N(0, σ2).

We saw that this implies

β̂ ∼ N(β, (XTX)−1σ2).

In particular,

β̂i ∼ N(βi, viσ
2),

where vi is the i-th diagonal element of (XTX)−1.

We want to test:

H0 : βi = 0

H1 : βi 6= 0.

Note: vi is known, but σ is unknown.
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Testing if coe�cients are zero (cont.)

Recall:

yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + εi,

Problem: How do we estimate σ?

Let ε̂i = yi − (xi,1β̂1 + xi,2β̂2 + · · ·+ xi,pβ̂p). What about:

σ̂2 =
1

n

n∑
i=1

ε̂2i ?

What is E(σ̂2)?

We have y = Xβ + ε and β̂ = (XTX)−1XT y. Thus,

ε̂ = y −Xβ̂
= y −X(XTX)−1XT y

= (I −X(XTX)−1XT )y

= (I −X(XTX)−1XT )(Xβ + ε)

= (I −X(XTX)−1XT )ε

= Mε.
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Testing if coe�cients are zero (cont.)

We showed ε̂ = Mε where M := I −X(XTX)−1XT . Now

n∑
i=1

ε̂2i = ε̂T ε̂ = εTMTMε.

Note: MT = M and

MTM = M2 = (I −X(XTX)−1XT )(I −X(XTX)−1XT )

= I −X(XTX)−1XT = M.

(In other words, M is idempotent.)

Therefore, n∑
i=1

ε̂2i = εTMε.

Now,

E(εTMε) = E(tr(MεεT ))

= trE(MεεT )

= trME(εεT )

= trMσ2I = σ2 trM.
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Testing if coe�cients are zero (cont.)

We proved:

E(

n∑
i=1

ε̂2i ) = σ2 trM,

where M = I −X(XTX)−1XT . (Here I = In, the n× n identity

matrix.)

What is trM?

Recall tr(AB) = tr(BA). Thus,

trM = tr(I −X(XTX)−1XT )

= n− tr(X(XTX)−1XT )

= n− tr(XTX(XTX)−1)

= n− tr(Ip)

= n− p.
Therefore,

1

n− p
E(

n∑
i=1

ε̂2i ) = σ2.
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Testing if coe�cients are zero (cont.)

As a result of the previous calculation, our estimator of the variance

σ2 in the regression model will be

s2 =
1

n− p

n∑
i=1

(yi − ŷi)2,

where ŷi := xi,1β̂1 + xi,2β̂2 + · · ·+ xi,pβ̂p is our prediction of yi.

Our test statistic is

T =
β̂i
s
√
vi
, vi = ((XTX)−1)ii.

Under the null hypothesis H0 : βi = 0, one can show that the above

T statistic has a student distribution with n− p degrees of freedom:

T ∼ tn−p.
Thus, to test if βi = 0, we compute the value of the T satistic, say

T = T̂ and reject the null hypothesis (at the α = 5% level) if

P (|tn−p| ≥ T̂ ) ≤ 0.05.

Important: This procedure cannot be iterated to remove multiple

coe�cients. We will see how this is done later.
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where ŷi := xi,1β̂1 + xi,2β̂2 + · · ·+ xi,pβ̂p is our prediction of yi.

Our test statistic is

T =
β̂i
s
√
vi
, vi = ((XTX)−1)ii.

Under the null hypothesis H0 : βi = 0, one can show that the above

T statistic has a student distribution with n− p degrees of freedom:

T ∼ tn−p.
Thus, to test if βi = 0, we compute the value of the T satistic, say

T = T̂ and reject the null hypothesis (at the α = 5% level) if

P (|tn−p| ≥ T̂ ) ≤ 0.05.

Important: This procedure cannot be iterated to remove multiple

coe�cients. We will see how this is done later.

13/16



Testing if coe�cients are zero (cont.)

As a result of the previous calculation, our estimator of the variance

σ2 in the regression model will be

s2 =
1

n− p

n∑
i=1

(yi − ŷi)2,
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Con�dence intervals for the regression coe�cients

Recall that

β̂i ∼ N(βi, viσ
2).

Using our esimate s2 for σ2, we can construct a 1− 2α con�dence

interval for βi:(
β̂i − z(1−α)

√
vis, β̂i + z(1−α)

√
vis
)
.

Here z(1−α) is the (1− α)-th percentile of the N(0, 1) distribution,

i.e.,

P (Z ≤ z1−α) = 1− α.
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Python

Unfortunately, scikit-learn doesn't compute t-statistics and
con�dence intervals.

However, the module statsmodels provides exactly what we

need.

import numpy as np
import statsmodels.api as sm
import statsmodels.formula.api as smf

# Load data
dat = sm.datasets.get_rdataset("Guerry", "HistData").data

# Fit regression model (using the natural log
# of one of the regressors)
results = smf.ols('Lottery ~ Literacy +
np.log(Pop1831)', data=dat).fit()

# Inspect the results
print results.summary()
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Python (cont.)
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