MATH 829: Introduction to Data Mining and Analysis Linear Regression: statistical tests

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

February 17, 2016

Suppose we have a linear model for some data:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon.$$

Suppose we have a linear model for some data:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon.$$

• An important problem is to identify which variables are really useful in predicting Y.

Suppose we have a linear model for some data:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon.$$

- An important problem is to identify which variables are really useful in predicting Y.
- We want to decide if $\beta_i = 0$ or not with some level of confidence.
- Also want to test if groups of coefficients $\{\beta_{i_k}: k=1,\ldots,l\}$ are zero.

Recall: to do a statistical test:

- State a null hypothesis H_0 and an alternative hypothesis H_1 .
- Onstruct an appropriate test statistics.
- Oerive the distribution of the test statistic under the null hypothesis.
- **③** Select a significance level α (typically 5% or 1%).
- Compute the test statistics and decide if the null hypothesis is rejected at the given significance level.

Example: Suppose $X \sim N(\mu, 1)$ with μ unknown. We want to test:

 $H_0: \mu = 0$ $H_1: \mu \neq 0.$

We have an iid sample $X_1, \ldots, X_n \sim N(\mu, 1)$.

Example: Suppose $X \sim N(\mu, 1)$ with μ unknown. We want to test:

$$H_0: \mu = 0$$
$$H_1: \mu \neq 0.$$

We have an iid sample $X_1, \ldots, X_n \sim N(\mu, 1)$. Recall: if $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ are independent, then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Example: Suppose $X \sim N(\mu, 1)$ with μ unknown. We want to test:

$$H_0: \mu = 0$$
$$H_1: \mu \neq 0.$$

We have an iid sample $X_1, \ldots, X_n \sim N(\mu, 1)$. Recall: if $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ are independent, then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Therefore, under H_0 , we have

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(0, \frac{1}{n}).$$

Test statistics: $\sqrt{n} \cdot \hat{\mu} \sim N(0, 1)$.

Example: Suppose $X \sim N(\mu, 1)$ with μ unknown. We want to test:

$$H_0: \mu = 0$$
$$H_1: \mu \neq 0.$$

We have an iid sample $X_1, \ldots, X_n \sim N(\mu, 1)$. Recall: if $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ are independent, then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Therefore, under H_0 , we have

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(0, \frac{1}{n}).$$

Test statistics: $\sqrt{n} \cdot \hat{\mu} \sim N(0, 1)$. Suppose we observed: $\sqrt{n}\hat{\mu} = k$.

Example: Suppose $X \sim N(\mu, 1)$ with μ unknown. We want to test:

$$H_0: \mu = 0$$
$$H_1: \mu \neq 0.$$

We have an iid sample $X_1, \ldots, X_n \sim N(\mu, 1)$. Recall: if $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ are independent, then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Therefore, under H_0 , we have

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(0, \frac{1}{n}).$$

Test statistics: $\sqrt{n} \cdot \hat{\mu} \sim N(0, 1)$. Suppose we observed: $\sqrt{n}\hat{\mu} = k$.

We compute:

$$P(-z_{\alpha} \le \sqrt{n}\hat{\mu} \le z_{\alpha}) = P(-z_{\alpha} \le N(0,1) \le z_{\alpha}) = 1 - \alpha.$$

Example: Suppose $X \sim N(\mu, 1)$ with μ unknown. We want to test:

$$H_0: \mu = 0$$
$$H_1: \mu \neq 0.$$

We have an iid sample $X_1, \ldots, X_n \sim N(\mu, 1)$. Recall: if $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ are independent, then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Therefore, under H_0 , we have

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(0, \frac{1}{n}).$$

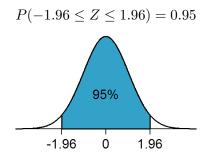
Test statistics: $\sqrt{n} \cdot \hat{\mu} \sim N(0, 1)$. Suppose we observed: $\sqrt{n}\hat{\mu} = k$.

We compute:

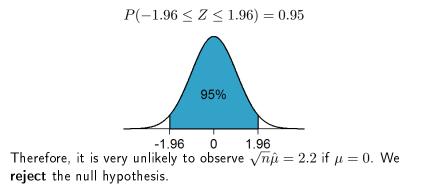
$$P(-z_{\alpha} \le \sqrt{n}\hat{\mu} \le z_{\alpha}) = P(-z_{\alpha} \le N(0,1) \le z_{\alpha}) = 1 - \alpha.$$

Reject the null hypothesis if $k \notin [-z_{\alpha}, z_{\alpha}]$.

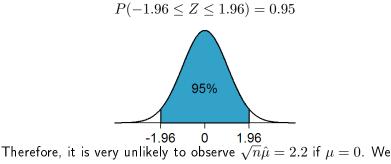
For example, suppose: $\alpha=0.05,\,\sqrt{n}\hat{\mu}=2.2.$ If $Z\sim N(0,1),$ then



For example, suppose: $\alpha=0.05,\,\sqrt{n}\hat{\mu}=2.2.$ If $Z\sim N(0,1),$ then



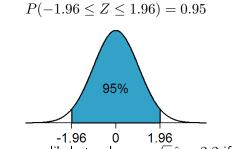
For example, suppose: $\alpha=0.05,\,\sqrt{n}\hat{\mu}=2.2.$ If $Z\sim N(0,1),$ then



reject the null hypothesis.

In fact, $P(-2.2 \le Z \le 2.2) \approx 0.972$. So our **p-value** is 0.028.

For example, suppose: $\alpha=0.05,\,\sqrt{n}\hat{\mu}=2.2.$ If $Z\sim N(0,1),$ then

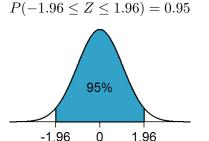


Therefore, it is very unlikely to observe $\sqrt{n}\hat{\mu} = 2.2$ if $\mu = 0$. We reject the null hypothesis.

In fact, $P(-2.2 \le Z \le 2.2) \approx 0.972$. So our **p-value** is 0.028.

• Type I error: H_0 true, but rejected \rightarrow False positive. (Controlled by the level α).

For example, suppose: $\alpha=0.05,\,\sqrt{n}\hat{\mu}=2.2.$ If $Z\sim N(0,1),$ then



Therefore, it is very unlikely to observe $\sqrt{n}\hat{\mu} = 2.2$ if $\mu = 0$. We reject the null hypothesis.

In fact, $P(-2.2 \le Z \le 2.2) \approx 0.972$. So our **p-value** is 0.028.

• Type I error: H_0 true, but rejected \rightarrow False positive. (Controlled by the level α).

• Type II error: H_0 false, but not rejected \rightarrow False negative. (Power of the test).

• In practice, we often include unnecessary variables in linear models.

- In practice, we often include unnecessary variables in linear models.
- These variables bias our estimator, and can lead to poor performance.

- In practice, we often include unnecessary variables in linear models.
- These variables bias our estimator, and can lead to poor performance.
- Need ways of identifying a "good" set of predictors.

We now discuss a classical approach that uses statistical tests.

- In practice, we often include unnecessary variables in linear models.
- These variables bias our estimator, and can lead to poor performance.
- Need ways of identifying a "good" set of predictors.

We now discuss a classical approach that uses statistical tests. Before, we tested if the mean of a $N(\mu,1)$ is zero:

$$H_0: \mu = 0$$
$$H_1: \mu \neq 0.$$

assuming $\sigma^2 = 1$ is known. What if the variance is *unknown*? Sample variance:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}, \qquad \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}.$$

In general, suppose $X \sim N(\mu, \sigma^2)$ with σ^2 known and we want to test

 $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0.$

In general, suppose $X \sim N(\mu, \sigma^2)$ with σ^2 known and we want to test

 $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0.$

Under the H_0 hypothesis, we have

$$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$$

In general, suppose $X \sim N(\mu, \sigma^2)$ with σ^2 known and we want to test

 $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0.$

Under the H_0 hypothesis, we have

$$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$$

Therefore, we use the test statistic

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1).$$

In general, suppose $X \sim N(\mu, \sigma^2)$ with σ^2 known and we want to test

 $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0.$

Under the H_0 hypothesis, we have

$$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$$

Therefore, we use the test statistic

$$Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1).$$

If the variance is unknown, we replace σ by its sample version s

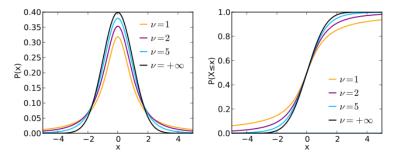
$$T = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}.$$

Review: the student distribution

The student t_{ν} distribution with ν degrees of freedom:

$$f_{\nu}(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}},$$

where Γ is the Gamma function.



When X_1, \ldots, X_n are iid $N(\mu, \sigma^2)$, then

$$\frac{\overline{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}.$$

Back to testing regression coefficients: suppose

$$y_i = x_{i,1}\beta_1 + x_{i,2}\beta_2 + \dots + x_{i,p}\beta_p + \epsilon_i,$$

where (x_{ij}) is a fixed matrix, and ϵ_i are iid $N(0, \sigma^2)$. We saw that this implies

$$\hat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma^2).$$

Back to testing regression coefficients: suppose

$$y_i = x_{i,1}\beta_1 + x_{i,2}\beta_2 + \dots + x_{i,p}\beta_p + \epsilon_i,$$

where (x_{ij}) is a fixed matrix, and ϵ_i are iid $N(0, \sigma^2)$. We saw that this implies

$$\hat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma^2).$$

In particular,

$$\hat{\beta}_i \sim N(\beta_i, v_i \sigma^2),$$

where v_i is the *i*-th diagonal element of $(X^T X)^{-1}$.

Back to testing regression coefficients: suppose

$$y_i = x_{i,1}\beta_1 + x_{i,2}\beta_2 + \dots + x_{i,p}\beta_p + \epsilon_i,$$

where (x_{ij}) is a fixed matrix, and ϵ_i are iid $N(0, \sigma^2)$. We saw that this implies

$$\hat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma^2).$$

In particular,

$$\hat{\beta}_i \sim N(\beta_i, v_i \sigma^2),$$

where v_i is the *i*-th diagonal element of $(X^T X)^{-1}$. We want to test:

$$H_0: \beta_i = 0$$
$$H_1: \beta_i \neq 0.$$

Back to testing regression coefficients: suppose

$$y_i = x_{i,1}\beta_1 + x_{i,2}\beta_2 + \dots + x_{i,p}\beta_p + \epsilon_i,$$

where (x_{ij}) is a fixed matrix, and ϵ_i are iid $N(0, \sigma^2)$. We saw that this implies

$$\hat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma^2).$$

In particular,

$$\hat{\beta}_i \sim N(\beta_i, v_i \sigma^2),$$

where v_i is the *i*-th diagonal element of $(X^T X)^{-1}$. We want to test:

$$H_0: \beta_i = 0$$
$$H_1: \beta_i \neq 0.$$

Note: v_i is known, but σ is **unknown**.

Recall:

$$y_i = x_{i,1}\beta_1 + x_{i,2}\beta_2 + \dots + x_{i,p}\beta_p + \epsilon_i,$$

Problem: How do we estimate σ ?

Recall:

$$y_i = x_{i,1}\beta_1 + x_{i,2}\beta_2 + \dots + x_{i,p}\beta_p + \epsilon_i,$$

Problem: How do we estimate σ ?

Let $\hat{\epsilon}_i = y_i - (x_{i,1}\hat{\beta}_1 + x_{i,2}\hat{\beta}_2 + \dots + x_{i,p}\hat{\beta}_p).$

Recall:

$$y_i = x_{i,1}\beta_1 + x_{i,2}\beta_2 + \dots + x_{i,p}\beta_p + \epsilon_i,$$

Problem: How do we estimate σ ? Let $\hat{\epsilon}_i = y_i - (x_{i,1}\hat{\beta}_1 + x_{i,2}\hat{\beta}_2 + \dots + x_{i,p}\hat{\beta}_p)$. What about: $\hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n \hat{\epsilon}_i^2$?

What is $E(\hat{\sigma}^2)$?

Recall:

$$y_i = x_{i,1}\beta_1 + x_{i,2}\beta_2 + \dots + x_{i,p}\beta_p + \epsilon_i,$$

Problem: How do we estimate σ ? Let $\hat{\epsilon}_i = y_i - (x_{i,1}\hat{\beta}_1 + x_{i,2}\hat{\beta}_2 + \dots + x_{i,p}\hat{\beta}_p)$. What about: $\hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n \hat{\epsilon}_i^2$?

What is $E(\hat{\sigma}^2)$? We have $y = X\beta + \epsilon$ and $\hat{\beta} = (X^T X)^{-1} X^T y$. Thus, $\hat{\epsilon} = u - X\hat{\beta}$ $= u - X(X^T X)^{-1} X^T u$ $= (I - X(X^T X)^{-1} X^T) y$ $= (I - X(X^T X)^{-1} X^T)(X\beta + \epsilon)$ $= (I - X(X^T X)^{-1} X^T)\epsilon$ $= M\epsilon$

We showed $\hat{\epsilon} = M \epsilon$ where $M := I - X (X^T X)^{-1} X^T.$ Now

We showed $\hat{\epsilon} = M \epsilon$ where $M := I - X (X^T X)^{-1} X^T.$ Now

$$\sum_{i=1}^{n} \hat{\epsilon}_i^2 = \hat{\epsilon}^T \hat{\epsilon} = \epsilon^T M^T M \epsilon.$$

We showed $\hat{\epsilon} = M \epsilon$ where $M := I - X (X^T X)^{-1} X^T.$ Now

$$\sum_{i=1}^n \hat{\epsilon}_i^2 = \hat{\epsilon}^T \hat{\epsilon} = \epsilon^T M^T M \epsilon.$$
 $M^T = M$ and

$$M^{T}M = M^{2} = (I - X(X^{T}X)^{-1}X^{T})(I - X(X^{T}X)^{-1}X^{T})$$
$$= I - X(X^{T}X)^{-1}X^{T} = M.$$

(In other words, M is idempotent.)

Note:

We showed $\hat{\epsilon} = M \epsilon$ where $M := I - X (X^T X)^{-1} X^T$. Now

$$\sum_{i=1}^n \hat{\epsilon}_i^2 = \hat{\epsilon}^T \hat{\epsilon} = \epsilon^T M^T M \epsilon.$$
 Note: $M^T = M$ and

$$M^{T}M = M^{2} = (I - X(X^{T}X)^{-1}X^{T})(I - X(X^{T}X)^{-1}X^{T})$$
$$= I - X(X^{T}X)^{-1}X^{T} = M.$$

(In other words, *M* is idempotent.) Therefore, *n*

$$\sum_{i=1}^{n} \hat{\epsilon}_i^2 = \epsilon^T M \epsilon.$$

We showed $\hat{\epsilon} = M \epsilon$ where $M := I - X (X^T X)^{-1} X^T$. Now

$$\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \hat{\epsilon}^{T} \hat{\epsilon} = \epsilon^{T} M^{T} M \epsilon.$$

= M and

$$M^{T}M = M^{2} = (I - X(X^{T}X)^{-1}X^{T})(I - X(X^{T}X)^{-1}X^{T})$$
$$= I - X(X^{T}X)^{-1}X^{T} = M.$$

(In other words, M is idempotent.) Therefore, n

$$\sum_{i=1}^{n} \hat{\epsilon}_i^2 = \epsilon^T M \epsilon.$$

Now,

Note: M^T

$$E(\epsilon^T M \epsilon) = E(\operatorname{tr}(M \epsilon \epsilon^T))$$

= tr $E(M \epsilon \epsilon^T)$
= tr $M E(\epsilon \epsilon^T)$
= tr $M \sigma^2 I = \sigma^2 \operatorname{tr} M.$

We proved:

$$E(\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}) = \sigma^{2} \operatorname{tr} M,$$

where $M = I - X(X^TX)^{-1}X^T$. (Here $I = I_n$, the $n \times n$ identity matrix.)

What is $\operatorname{tr} \mathbf{M}$?

We proved:

$$E(\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}) = \sigma^{2} \operatorname{tr} M,$$

where $M = I - X(X^TX)^{-1}X^T$. (Here $I = I_n$, the $n \times n$ identity matrix.)

What is $\operatorname{tr} \mathbf{M}$? Recall $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. Thus,

We proved:

$$E(\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}) = \sigma^{2} \operatorname{tr} M,$$

where $M=I-X(X^TX)^{-1}X^T.$ (Here $I=I_n,$ the $n\times n$ identity matrix.)

What is $\operatorname{tr} \mathbf{M}$? Recall $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. Thus,

$$\operatorname{tr} M = \operatorname{tr}(I - X(X^T X)^{-1} X^T)$$
$$= n - \operatorname{tr}(X(X^T X)^{-1} X^T)$$
$$= n - \operatorname{tr}(X^T X(X^T X)^{-1})$$
$$= n - \operatorname{tr}(I_p)$$
$$= n - p.$$

We proved:

$$E(\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}) = \sigma^{2} \operatorname{tr} M,$$

where $M=I-X(X^TX)^{-1}X^T.$ (Here $I=I_n,$ the $n\times n$ identity matrix.)

What is $\operatorname{tr} \mathbf{M}$? Recall $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. Thus,

$$\operatorname{tr} M = \operatorname{tr}(I - X(X^T X)^{-1} X^T)$$
$$= n - \operatorname{tr}(X(X^T X)^{-1} X^T)$$
$$= n - \operatorname{tr}(X^T X(X^T X)^{-1})$$
$$= n - \operatorname{tr}(I_p)$$
$$= n - p.$$

Therefore,

$$\frac{1}{n-p}E(\sum_{i=1}^{n}\hat{\epsilon}_{i}^{2})=\sigma^{2}.$$

As a result of the previous calculation, our estimator of the variance σ^2 in the regression model will be

$$s^{2} = \frac{1}{n-p} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2},$$

where $\hat{y}_i := x_{i,1}\hat{\beta}_1 + x_{i,2}\hat{\beta}_2 + \cdots + x_{i,p}\hat{\beta}_p$ is our prediction of y_i .

As a result of the previous calculation, our estimator of the variance σ^2 in the regression model will be

$$s^{2} = \frac{1}{n-p} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2},$$

where $\hat{y}_i := x_{i,1}\hat{\beta}_1 + x_{i,2}\hat{\beta}_2 + \cdots + x_{i,p}\hat{\beta}_p$ is our prediction of y_i . Our test statistic is

$$T = \frac{\beta_i}{s\sqrt{v_i}}, \qquad \qquad v_i = ((X^T X)^{-1})_{ii}.$$

As a result of the previous calculation, our estimator of the variance σ^2 in the regression model will be

$$s^{2} = \frac{1}{n-p} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2},$$

where $\hat{y}_i := x_{i,1}\hat{\beta}_1 + x_{i,2}\hat{\beta}_2 + \cdots + x_{i,p}\hat{\beta}_p$ is our prediction of y_i . Our test statistic is

$$T = \frac{\beta_i}{s\sqrt{v_i}}, \qquad \qquad v_i = ((X^T X)^{-1})_{ii}.$$

Under the null hypothesis $H_0: \beta_i = 0$, one can show that the above T statistic has a student distribution with n-p degrees of freedom:

$$T \sim t_{n-p}$$

As a result of the previous calculation, our estimator of the variance σ^2 in the regression model will be

$$s^{2} = \frac{1}{n-p} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2},$$

where $\hat{y}_i := x_{i,1}\hat{\beta}_1 + x_{i,2}\hat{\beta}_2 + \cdots + x_{i,p}\hat{\beta}_p$ is our prediction of y_i . Our test statistic is

$$T = \frac{\beta_i}{s\sqrt{v_i}}, \qquad \qquad v_i = ((X^T X)^{-1})_{ii}.$$

Under the null hypothesis $H_0: \beta_i = 0$, one can show that the above T statistic has a student distribution with n - p degrees of freedom:

$$T \sim t_{n-p}$$

Thus, to test if $\beta_i = 0$, we compute the value of the T satistic, say $T = \hat{T}$ and reject the null hypothesis (at the $\alpha = 5\%$ level) if

$$P(|t_{n-p}| \ge \hat{T}) \le 0.05.$$

As a result of the previous calculation, our estimator of the variance σ^2 in the regression model will be

$$s^{2} = \frac{1}{n-p} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2},$$

where $\hat{y}_i := x_{i,1}\hat{\beta}_1 + x_{i,2}\hat{\beta}_2 + \cdots + x_{i,p}\hat{\beta}_p$ is our prediction of y_i . Our test statistic is

$$T = \frac{\beta_i}{s\sqrt{v_i}}, \qquad \qquad v_i = ((X^T X)^{-1})_{ii}.$$

Under the null hypothesis $H_0: \beta_i = 0$, one can show that the above T statistic has a student distribution with n - p degrees of freedom:

$$T \sim t_{n-p}$$

Thus, to test if $\beta_i = 0$, we compute the value of the T satistic, say $T = \hat{T}$ and reject the null hypothesis (at the $\alpha = 5\%$ level) if

$$P(|t_{n-p}| \ge \hat{T}) \le 0.05.$$

Important: This procedure **cannot** be iterated to remove multiple coefficients. We will see how this is done later.

Confidence intervals for the regression coefficients

Recall that

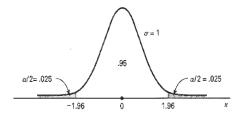
$$\hat{\beta}_i \sim N(\beta_i, v_i \sigma^2).$$

Using our esimate s^2 for $\sigma^2,$ we can construct a $1-2\alpha$ confidence interval for β_i :

$$\left(\hat{\beta}_i - z^{(1-\alpha)}\sqrt{v_i}s, \hat{\beta}_i + z^{(1-\alpha)}\sqrt{v_i}s\right).$$

Here $z^{(1-\alpha)}$ is the $(1-\alpha)\text{-th}$ percentile of the N(0,1) distribution, i.e.,

$$P(Z \le z^{1-\alpha}) = 1 - \alpha.$$



Python

- Unfortunately, scikit-learn doesn't compute t-statistics and confidence intervals.
- However, the module statsmodels provides exactly what we need.

```
import numpy as np
import statsmodels.api as sm
import statsmodels.formula.api as smf
# Load data
dat = sm.datasets.get_rdataset("Guerry", "HistData").data
# Fit regression model (using the natural log
# of one of the regressors)
results = smf.ols('Lottery ~ Literacy +
np.log(Pop1831)', data=dat).fit()
# Inspect the results
print results.summary()
```

		OLS Regres:	sion Results			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	Lottery OLS Least Squares Mon, 18 Jan 2016 15:40:59 86 83 2		Adj. R-squared: F-statistic:		0.348 0.333 22.20 1.90e-08 -379.82 765.6 773.0	
	coef	std err	t	P> t	[95.0% Co	nf. Int.]
Intercept Literacy np.log(Pop1831)	246.4341 -0.4889 -31.3114	35.233 0.128 5.977	6.995 -3.832 -5.239	0.000 0.000 0.000	176.358 -0.743 -43.199	-0.235
Omnibus: Prob(Omnibus): Skew: Kurtosis:	3.713 5): 0.156 -0.487 3.003		Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		2.019 3.394 0.183 702.	