MATH 829: Introduction to Data Mining and Analysis Subset selection

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware
February 19, 2016

Testing multiple coefficients

We saw before how to use the t-statistic to test

$$
\begin{aligned}
& H_{0}: \beta_{i}=0 \\
& H_{1}: \beta_{i} \neq 0 .
\end{aligned}
$$

Testing multiple coefficients

We saw before how to use the t-statistic to test

$$
\begin{aligned}
& H_{0}: \beta_{i}=0 \\
& H_{1}: \beta_{i} \neq 0 .
\end{aligned}
$$

Given $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, p\}$, we want to rigorously test

$$
\begin{aligned}
& H_{0}: \beta_{i_{1}}=\beta_{i_{2}}=\cdots=\beta_{i_{k}}=0 \\
& H_{1}: \beta_{i_{1}} \neq 0 \text { or } \beta_{i_{2}} \neq 0 \text { or } \cdots \text { or } \beta_{i_{k}} \neq 0 .
\end{aligned}
$$

Testing multiple coefficients

We saw before how to use the t-statistic to test

$$
\begin{aligned}
& H_{0}: \beta_{i}=0 \\
& H_{1}: \beta_{i} \neq 0 .
\end{aligned}
$$

Given $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, p\}$, we want to rigorously test

$$
\begin{aligned}
& H_{0}: \beta_{i_{1}}=\beta_{i_{2}}=\cdots=\beta_{i_{k}}=0 \\
& H_{1}: \beta_{i_{1}} \neq 0 \text { or } \beta_{i_{2}} \neq 0 \text { or } \cdots \text { or } \beta_{i_{k}} \neq 0 .
\end{aligned}
$$

We use the F statistic

$$
F=\frac{\left(\operatorname{RSS}_{0}-\operatorname{RSS}_{1}\right) /\left(p-p_{0}\right)}{\operatorname{RSS}_{1} /(n-p)}
$$

where
$\mathrm{RSS}_{1}=$ residual sum of squares for full model,
$\mathrm{RSS}_{0}=$ residual sum of squares for the nested smaller model.

Testing multiple coefficients

We saw before how to use the t-statistic to test

$$
\begin{aligned}
& H_{0}: \beta_{i}=0 \\
& H_{1}: \beta_{i} \neq 0 .
\end{aligned}
$$

Given $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, p\}$, we want to rigorously test

$$
\begin{aligned}
& H_{0}: \beta_{i_{1}}=\beta_{i_{2}}=\cdots=\beta_{i_{k}}=0 \\
& H_{1}: \beta_{i_{1}} \neq 0 \text { or } \beta_{i_{2}} \neq 0 \text { or } \cdots \text { or } \beta_{i_{k}} \neq 0 .
\end{aligned}
$$

We use the F statistic

$$
F=\frac{\left(\operatorname{RSS}_{0}-\operatorname{RSS}_{1}\right) /\left(p-p_{0}\right)}{\operatorname{RSS}_{1} /(n-p)}
$$

where
$\mathrm{RSS}_{1}=$ residual sum of squares for full model,
$\mathrm{RSS}_{0}=$ residual sum of squares for the nested smaller model.
Can be seen as a measure of the change in residual sum-of-squares per additional parameter in the bigger model.

Testing multiple coefficients (cont.)

Under the H_{0} assumption that the smaller model is correct, the F statistic has an F-distribution

$$
F \sim F_{p-p_{0}, n-p} .
$$

Testing multiple coefficients (cont.)

Under the H_{0} assumption that the smaller model is correct, the F statistic has an F-distribution

$$
F \sim F_{p-p_{0}, n-p}
$$

To test if a group of coefficients are 0 :
(1) Compute the F-statistic.
(2) Reject H_{0} for large values of the F-statistic.

A simple illustration of the previous ideas.

```
import numpy as np
import statsmodels.api as sm
# Generate random data
n}=5
epsilon = np.random.randn(n,1) # Try varying the sample size
X = np.random.randn (n,5)
y = 3*X[:,0] + 4*X[:,1] + epsilon # Try changing coefficients
results = sm.OLS(y,X).fit()
print(results.summary())
R = [[0,0,1,0,0],
    [0,0,0,1,0],
print(results.f_test(R))
R = [[1,0,0,0,0],[0,1,0,0,0]]
print(results.f_test(R))
```


Python (cont.)

Subset selection

- We saw before that the OLS is the best linear unbiased estimator for β.

Subset selection

- We saw before that the OLS is the best linear unbiased estimator for β.
- However, biased estimators can significantly improve the performance (e.g. reduce prediction error).
- We saw before that the OLS is the best linear unbiased estimator for β.
- However, biased estimators can significantly improve the performance (e.g. reduce prediction error).

We now explore various approaches that can be used to select an appropriate subset of variables in a linear regression.

- We saw before that the OLS is the best linear unbiased estimator for β.
- However, biased estimators can significantly improve the performance (e.g. reduce prediction error).

We now explore various approaches that can be used to select an appropriate subset of variables in a linear regression.
Best subset selection: Given $k \in\{1, \ldots, p\}$, we find the subset of size k of $\{1, \ldots, p\}$ that minimizes the prediction error.

- We saw before that the OLS is the best linear unbiased estimator for β.
- However, biased estimators can significantly improve the performance (e.g. reduce prediction error).

We now explore various approaches that can be used to select an appropriate subset of variables in a linear regression.
Best subset selection: Given $k \in\{1, \ldots, p\}$, we find the subset of size k of $\{1, \ldots, p\}$ that minimizes the prediction error.

- Note: there are $\binom{p}{k}$ subsets of size k and 2^{k} possible subsets. So the procedure is only computationally feasible for small values of p.
- We saw before that the OLS is the best linear unbiased estimator for β.
- However, biased estimators can significantly improve the performance (e.g. reduce prediction error).

We now explore various approaches that can be used to select an appropriate subset of variables in a linear regression.
Best subset selection: Given $k \in\{1, \ldots, p\}$, we find the subset of size k of $\{1, \ldots, p\}$ that minimizes the prediction error.

- Note: there are $\binom{p}{k}$ subsets of size k and 2^{k} possible subsets. So the procedure is only computationally feasible for small values of p.
- The leaps and bounds procedure (Furnival and Wilson, 1974) makes this feasible for p as large as 30 or 40.

Best subset selection: cars dataset

Prediction score for all subsets of predictors for the cars dataset

Best subset selection: cars dataset

Prediction score for all subsets of predictors for the cars dataset

Best subset = ['Mileage','Liter','Doors','Cruise','Sound', 'Leather']. Not included $=$ ['Cylinder']
Best subset of 4 elements: ['Mileage','Liter',' 'Cruise','Leather']

Best subset selection: cars dataset, Chevrolet

Restricting to Chevrolet only:

Prediction score for all subsets of predictors for the cars dataset

- Best subset selection performs well, but is too computationally intensive to be useful in practice.
- Best subset selection performs well, but is too computationally intensive to be useful in practice.
Two natural "greedy" variants of the best subset selection technique:
- Forward stepwise regression: starts with the intercept \bar{y}, and then sequentially adds into the model the predictor that most improves the fit.
- Best subset selection performs well, but is too computationally intensive to be useful in practice.
Two natural "greedy" variants of the best subset selection technique:
- Forward stepwise regression: starts with the intercept \bar{y}, and then sequentially adds into the model the predictor that most improves the fit.
- Backward stepwise regression: starts with the full model, and sequentially deletes the predictor that has the least impact on the fit (smallest Z-score or t-score).
- Best subset selection performs well, but is too computationally intensive to be useful in practice.
Two natural "greedy" variants of the best subset selection technique:
- Forward stepwise regression: starts with the intercept \bar{y}, and then sequentially adds into the model the predictor that most improves the fit.
- Backward stepwise regression: starts with the full model, and sequentially deletes the predictor that has the least impact on the fit (smallest Z-score or t-score).
Can be used even when the number of variables is very large. However,
- Best subset selection performs well, but is too computationally intensive to be useful in practice.
Two natural "greedy" variants of the best subset selection technique:
- Forward stepwise regression: starts with the intercept \bar{y}, and then sequentially adds into the model the predictor that most improves the fit.
- Backward stepwise regression: starts with the full model, and sequentially deletes the predictor that has the least impact on the fit (smallest Z-score or t-score).
Can be used even when the number of variables is very large. However,
- Greedy approach: doesn't guarantee a global optimum.
- Less rigorous than other methods, less supporting theory.
- Best subset selection performs well, but is too computationally intensive to be useful in practice.
Two natural "greedy" variants of the best subset selection technique:
- Forward stepwise regression: starts with the intercept \bar{y}, and then sequentially adds into the model the predictor that most improves the fit.
- Backward stepwise regression: starts with the full model, and sequentially deletes the predictor that has the least impact on the fit (smallest Z-score or t-score).
Can be used even when the number of variables is very large. However,
- Greedy approach: doesn't guarantee a global optimum.
- Less rigorous than other methods, less supporting theory. Nevertheless, the stepwise approaches often return predictors similar to the predictors obtained from more complex methods with better theory.

Correlation

Recall: Covariance is a measure of linear dependence between random variables:

$$
\operatorname{Cov}(X, Y)=E((X-E(X))(Y-E(Y)))
$$

Correlation

Recall: Covariance is a measure of linear dependence between random variables:

$$
\operatorname{Cov}(X, Y)=E((X-E(X))(Y-E(Y)))
$$

Correlation

Recall: Covariance is a measure of linear dependence between random variables:

$$
\operatorname{Cov}(X, Y)=E((X-E(X))(Y-E(Y)))
$$

(1) $\operatorname{Cov}(\cdot, \cdot)$ is bilinear and symmetric.
(2) $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$.
(3) $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$.
(1) X, Y independent $\Rightarrow \operatorname{Cov}(X, Y)=0$.

Correlation

How can we tell if variables have a linear relationship?

Correlation

How can we tell if variables have a linear relationship?
The correlation (coefficient) between X and Y is given by:

$$
\rho=\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Correlation

How can we tell if variables have a linear relationship?
The correlation (coefficient) between X and Y is given by:

$$
\rho=\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

The correlation coefficient is a measure of the linear dependence between two random variables.

How can we tell if variables have a linear relationship?
The correlation (coefficient) between X and Y is given by:

$$
\rho=\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

The correlation coefficient is a measure of the linear dependence between two random variables.

Theorem: Assume $\operatorname{Var}(X), \operatorname{Var}(Y)<\infty$. The correlation coefficient $\rho(X, Y)$ satisfies

$$
-1 \leq \rho(X, Y) \leq 1
$$

Moreover, $\rho(X, Y)= \pm 1$ if and only if $\mathbb{P}(Y=a X+b)=1$ for some constants a, b. In this case, $a>0$ if $\rho(X, Y)=1$ and $a<0$ if $\rho(X, Y)=-1$.

Forward stagewise regression

- Start with intercept \bar{y}, and centered predictors with coefficients initially all 0 .

Forward stagewise regression

- Start with intercept \bar{y}, and centered predictors with coefficients initially all 0 .
- At each step the algorithm: identify the variable most correlated with the current residual.
- Start with intercept \bar{y}, and centered predictors with coefficients initially all 0 .
- At each step the algorithm: identify the variable most correlated with the current residual.
- Compute the simple linear regression coefficient of the residual on this chosen variable, and add it to the current coefficient for that variable.
- Start with intercept \bar{y}, and centered predictors with coefficients initially all 0 .
- At each step the algorithm: identify the variable most correlated with the current residual.
- Compute the simple linear regression coefficient of the residual on this chosen variable, and add it to the current coefficient for that variable.
- Continued till none of the variables have correlation with the residuals.
In other words:
- $C=\emptyset, \hat{y}_{1}=\bar{y}, \beta_{1}=\cdots=\beta_{p}=0$.
- Suppose $X_{i_{1}}$ is most correlated to y.

$$
C \rightarrow C \cup\left\{X_{i_{1}}\right\} .
$$

- Solve $y-\hat{y}_{1}=\alpha_{i_{1}} X_{i_{1}}+\epsilon$.

$$
\beta_{i_{1}} \rightarrow \beta_{i_{1}}+\alpha_{i_{1}} .
$$

- etc.

Remarks:

(1) Unlike forward-stepwise regression, none of the other variables are adjusted when a term is added to the model.

Remarks:

(1) Unlike forward-stepwise regression, none of the other variables are adjusted when a term is added to the model.
(2) The process can take more than \mathbf{p} steps to reach the least squares fit.
(3) Historically, forward stagewise regression has been dismissed as being inefficient.

Remarks:

(1) Unlike forward-stepwise regression, none of the other variables are adjusted when a term is added to the model.
(2) The process can take more than \mathbf{p} steps to reach the least squares fit.
(3) Historically, forward stagewise regression has been dismissed as being inefficient.
(a) However, it can be quite competitive, especially in very high-dimensional problems.

FIGURE 3.6. Comparison of four subset-selection techniques on a simulated linear regression problem $Y=X^{T} \beta+\varepsilon$. There are $N=300$ observations on $p=31$ standard Gaussian variables, with pairwise correlations all equal to 0.85 . For 10 of the variables, the coefficients are drawn at random from a $N(0,0.4)$ distribution; the rest are zero. The noise $\varepsilon \sim N(0,6.25)$, resulting in a signal-to-noise ratio of 0.64 . Results are averaged over 50 simulations. Shown is the mean-squared error of the estimated coefficient $\hat{\beta}(k)$ at each step from the true β.

ESL, Fig. 3.6

