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Shrinkage methods

Penalizing the coefficients:

@ Suppose we want to restrict the number or the size of the
regression coefficients.

@ Add a penalty (or “price to pay”) for including a nonzero
coefficient.
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o Pay a fixed price A for including a given variable into the

model.
e Variables that do not significantly contribute to reducing the

error are excluded from the model (i.e., §; = 0).
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Shrinkage methods

Penalizing the coefficients:
@ Suppose we want to restrict the number or the size of the
regression coefficients.
@ Add a penalty (or “price to pay”) for including a nonzero
coefficient.

Examples: Let A > 0 be a parameter.
o

P
p" = argmin (Hy —~XBI3+A) 15#0) -
peR? =1
o Pay a fixed price A for including a given variable into the
model.
e Variables that do not significantly contribute to reducing the
error are excluded from the model (i.e., §; = 0).
o Problem: difficult to solve (combinatorial optimization).
Cannot be solved efficiently for a large number of variables.
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Shrinkage methods (cont.)

Relaxations of the previous approach:

@ Ridge regression/Tikhonov regularization:

p
B98¢ = argmin (Hy — X8B3+ AZB?) :
BERP

i=1
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Shrinkage methods (cont.)

Relaxations of the previous approach:

@ Ridge regression/Tikhonov regularization:

p
Bridee — argmin (Hy — X8|+ AZB?) :
BERP

i=1

o Shrinks the regression coefficients by imposing a penalty on
their size.

o Penalty = X - || 8|3

e Problem equivalent to
Bridee = argming,p, ly — X 3|3 subject to 37_, 52 < t.

e Penalty is a smooth function.

e Easy to solve (solution can be written in closed form).

o Generally does not set any coefficient to zero (no model
selection).

o Can be used to “regularize” a rank deficient problem (n < p).
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Ridge regression: closed form solution

We have
0 P P
a5 <HyXﬁ||% + AZ@?) =2XTXB - XTy)+2)) B;
i=1 i=1

=2((X"X +AB - XTy).
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Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

Bridge _ (XTX + )\I>_1XTy.
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Ridge regression: closed form solution

We have

p p
(fﬁ (Hy —~ XBl3+ AZ@?) =2XTXB - XTy)+2)) _B;
=1 =1

=2((X"X +AB - XTy).
Therefore, the critical points satisfy

(XTX + A3 =XTy.
Note: (X7 X + M) is positive definite, and therefore invertible.

Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

Bridge _ (XTX + )\I>_1XTy.
Remarks:
@ When X > 0, the estimator is defined even when n < p.

@ When A = 0 and n > p, we recover the usual least squares
solution.

o Makes rigorous “adding a multiple of the identity” to X7 X.
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© The Lasso (Least Absolute Shrinkage and Selection Operator):

p
51asso = argmin <Hy — Xﬁ”% + )\Z ’,31|> .
BERP

=1
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© The Lasso (Least Absolute Shrinkage and Selection Operator):

p
51asso = argmin <Hy — Xﬂ”% + )\Z ’,31|> .
BERP

=1

o Introduced in 1996 by Robert Tibshirani.

o Equivalent to flasse = argmingep, ||y — X 3|3 subject to
18l = 37— 1Bil < t.

e Both sets coefficients to zero (model selection) and shrinks
coefficients.

o More “global” approach to selecting variables compared to
previously discussed greedy approaches.

o Can be seen as a convex relaxation of the 3° problem.

o No closed form solution, but can solved efficiently using convex
optimization methods.

o Performs well in practice.

e Very popular. Active area of research.
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Important model selection property

Blasso — argminﬁeRp ||y - Xﬂ”%
subject to [|B]1 = >_1_, [8i] <t
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Important model selection property

Blasso — argminﬁeRp ||y - Xﬂ”%
subject to [|B]1 = >_1_, [8i] <t

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |Bi| + |Bz2| < t and BT + B3 < 12, respectively,
while the red ellipses are the contours of the least squares error function.

ESL, Fig. 3.11
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Blasso — argminﬁeRp ||y - Xﬂ”%
subject to [|B]1 = >_1_, [8i] <t
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FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |Bi| + |Bz2| < t and BT + B3 < 12, respectively,
while the red ellipses are the contours of the least squares error function.

ESL, Fig. 3.11

Solutions are the intersection of the ellipses with the || - [|1 or || - ||2
balls. Corners of the || - || have zero coefficients.
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Important model selection property

Blasso — argminﬁeRp ||y - Xﬂ”%
subject to [|B]1 = >_1_, [8i] <t

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |81 + |B2] < t and 7 + B3 < {2, respectively,
while the red ellipses are the contours of the least squares error function.

ESL, Fig. 3.11.

Solutions are the intersection of the ellipses with the || - [|1 or || - ||2
balls. Corners of the || - || have zero coefficients.

We will explore the Lasso (computation, properties, etc.) in the
next lecture.
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Scikit-learn has an object to compute Lasso solution.
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Scikit-learn has an object to compute Lasso solution.

Note: the package solves a slightly different (but equivalent)
problem than discussed above:

o1
argmin |y — Xwl3 + allw].
weRP n
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Scikit-learn has an object to compute Lasso solution.

Note: the package solves a slightly different (but equivalent)
problem than discussed above:

o1
a%mmgﬂy—XM@+®Wh-
weRP n

from sklearn.linear_model import Lasso

clf = linear_model.Lasso(alpha=0.1)
clf.fit(X,y)

print(clf.coef_)
print(clf.intercept_)
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Python (cont.)

A simple example with simulated data

import numpy as np
from sklearn.linear_model import Lasso
import matplotlib.pyplot as plt

# Generate random data
n = 100

p
X = np.random.randn(n,p)
epsilon = np.random.randn(n,1)
beta = np.random.rand (p)

y = X.dot(beta) + epsilon

alphas = np.arange(0.1,2,0.1) # 0.1 to 2, step = 0.1
N = len(alphas) # Number of lasso parameters
betas = np.zeros((N,p+1)) # p+l because of intercept
for i in range(N):

clf = Lasso(alphas[i])

clf . fit(X,y)

betas[i,0] = clf.intercept_

betas[i,1:] = clf.coef_
plt.plot(alphas,betas,linewidth=2)
plt.legend(range(p))
plt.xlabel(’alpha’)
plt.ylabel(’Coefficients’)
plt.xlim(min(alphas) ,max (alphas))
plt.show()
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Python (cont.)
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Elastic net

Elastic net (Zou and Hastie, 2005)

Be—net argmin ||y_XﬂH§—|->\2HﬁH§+>\1||ﬁ||1
BERP
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Elastic net

Elastic net (Zou and Hastie, 2005)

Be—net argmin ||y_XﬂH§—{—)\2HﬁH%+>\l||ﬁ||1
BERP

@ Benefits from both ¢; (model
selection) and ¢ regularization.
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Elastic net

Elastic net (Zou and Hastie, 2005)

Be—net argmin ||y_XﬂH§—{—)\2HﬁH%+>\l||ﬁ||1
BERP

@ Benefits from both ¢; (model
selection) and ¢ regularization.

@ Downside: Two parameters to
choose instead of one (can
increase the computational burden
quite a lot in large experiments).
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