MATH 829: Introduction to Data Mining and Analysis Penalizing the coefficients

Dominique Guillot
Departments of Mathematical Sciences
University of Delaware

February 22, 2016

Shrinkage methods

Penalizing the coefficients:

- Suppose we want to restrict the number or the size of the regression coefficients.
- Add a penalty (or "price to pay") for including a nonzero coefficient.

Shrinkage methods

Penalizing the coefficients:

- Suppose we want to restrict the number or the size of the regression coefficients.
- Add a penalty (or "price to pay") for including a nonzero coefficient.
Examples: Let $\lambda>0$ be a parameter.
(1)

$$
\hat{\beta}^{0}=\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \mathbf{1}_{\beta_{i} \neq 0}\right) .
$$

Shrinkage methods

Penalizing the coefficients:

- Suppose we want to restrict the number or the size of the regression coefficients.
- Add a penalty (or "price to pay") for including a nonzero coefficient.
Examples: Let $\lambda>0$ be a parameter.
(1)

$$
\hat{\beta}^{0}=\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \mathbf{1}_{\beta_{i} \neq 0}\right) .
$$

- Pay a fixed price λ for including a given variable into the model.

Shrinkage methods

Penalizing the coefficients:

- Suppose we want to restrict the number or the size of the regression coefficients.
- Add a penalty (or "price to pay") for including a nonzero coefficient.
Examples: Let $\lambda>0$ be a parameter.
(1)

$$
\hat{\beta}^{0}=\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \mathbf{1}_{\beta_{i} \neq 0}\right) .
$$

- Pay a fixed price λ for including a given variable into the model.
- Variables that do not significantly contribute to reducing the error are excluded from the model (i.e., $\beta_{i}=0$).

Shrinkage methods

Penalizing the coefficients:

- Suppose we want to restrict the number or the size of the regression coefficients.
- Add a penalty (or "price to pay") for including a nonzero coefficient.

Examples: Let $\lambda>0$ be a parameter.
(1)

$$
\hat{\beta}^{0}=\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \mathbf{1}_{\beta_{i} \neq 0}\right) .
$$

- Pay a fixed price λ for including a given variable into the model.
- Variables that do not significantly contribute to reducing the error are excluded from the model (i.e., $\beta_{i}=0$).
- Problem: difficult to solve (combinatorial optimization). Cannot be solved efficiently for a large number of variables.

Shrinkage methods (cont.)

Relaxations of the previous approach:
(2) Ridge regression/Tikhonov regularization:

$$
\hat{\beta}^{\mathrm{ridge}}=\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \beta_{i}^{2}\right) .
$$

Shrinkage methods (cont.)

Relaxations of the previous approach:
(2) Ridge regression/Tikhonov regularization:

$$
\hat{\beta}^{\mathrm{ridge}}=\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \beta_{i}^{2}\right) .
$$

- Shrinks the regression coefficients by imposing a penalty on their size.
- Penalty $=\lambda \cdot\|\beta\|_{2}^{2}$.
- Problem equivalent to $\hat{\beta}^{\text {ridge }}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}}\|y-X \beta\|_{2}^{2}$ subject to $\sum_{i=1}^{p} \beta_{i}^{2} \leq t$.
- Penalty is a smooth function.
- Easy to solve (solution can be written in closed form).
- Generally does not set any coefficient to zero (no model selection).
- Can be used to "regularize" a rank deficient problem ($n<p$).

Ridge regression: closed form solution

We have

$$
\begin{aligned}
\frac{\partial}{\partial \beta}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \beta_{i}^{2}\right) & =2\left(X^{T} X \beta-X^{T} y\right)+2 \lambda \sum_{i=1}^{p} \beta_{i} \\
& =2\left(\left(X^{T} X+\lambda I\right) \beta-X^{T} y\right) .
\end{aligned}
$$

Ridge regression: closed form solution

We have

$$
\frac{\partial}{\partial \beta}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \beta_{i}^{2}\right)=2\left(X^{T} X \beta-X^{T} y\right)+2 \lambda \sum_{i=1}^{p} \beta_{i}
$$

Therefore, the critical points satisfy

$$
\left(X^{T} X+\lambda I\right) \beta=X^{T} y
$$

Ridge regression: closed form solution

We have

$$
\frac{\partial}{\partial \beta}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \beta_{i}^{2}\right)=2\left(X^{T} X \beta-X^{T} y\right)+2 \lambda \sum_{i=1}^{p} \beta_{i}
$$

$$
=2\left(\left(X^{T} X+\lambda I\right) \beta-X^{T} y\right) .
$$

Therefore, the critical points satisfy

$$
\left(X^{T} X+\lambda I\right) \beta=X^{T} y
$$

Note: $\left(X^{T} X+\lambda I\right)$ is positive definite, and therefore invertible.

Ridge regression: closed form solution

We have

$$
\frac{\partial}{\partial \beta}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \beta_{i}^{2}\right)=2\left(X^{T} X \beta-X^{T} y\right)+2 \lambda \sum_{i=1}^{p} \beta_{i}
$$

$$
=2\left(\left(X^{T} X+\lambda I\right) \beta-X^{T} y\right) .
$$

Therefore, the critical points satisfy

$$
\left(X^{T} X+\lambda I\right) \beta=X^{T} y
$$

Note: $\left(X^{T} X+\lambda I\right)$ is positive definite, and therefore invertible. Therefore, the system has a unique solution. Can check using the Hessian that the solution is a minimum. Thus,

$$
\beta^{\text {ridge }}=\left(X^{T} X+\lambda I\right)^{-1} X^{T} y .
$$

Ridge regression: closed form solution

We have

$$
\frac{\partial}{\partial \beta}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \beta_{i}^{2}\right)=2\left(X^{T} X \beta-X^{T} y\right)+2 \lambda \sum_{i=1}^{p} \beta_{i}
$$

$$
=2\left(\left(X^{T} X+\lambda I\right) \beta-X^{T} y\right) .
$$

Therefore, the critical points satisfy

$$
\left(X^{T} X+\lambda I\right) \beta=X^{T} y
$$

Note: $\left(X^{T} X+\lambda I\right)$ is positive definite, and therefore invertible. Therefore, the system has a unique solution. Can check using the Hessian that the solution is a minimum. Thus,

$$
\beta^{\text {ridge }}=\left(X^{T} X+\lambda I\right)^{-1} X^{T} y .
$$

Remarks:

- When $\lambda>0$, the estimator is defined even when $n<p$.

Ridge regression: closed form solution

We have

$$
\frac{\partial}{\partial \beta}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \beta_{i}^{2}\right)=2\left(X^{T} X \beta-X^{T} y\right)+2 \lambda \sum_{i=1}^{p} \beta_{i}
$$

$$
=2\left(\left(X^{T} X+\lambda I\right) \beta-X^{T} y\right) .
$$

Therefore, the critical points satisfy

$$
\left(X^{T} X+\lambda I\right) \beta=X^{T} y
$$

Note: $\left(X^{T} X+\lambda I\right)$ is positive definite, and therefore invertible. Therefore, the system has a unique solution. Can check using the Hessian that the solution is a minimum. Thus,

$$
\beta^{\text {ridge }}=\left(X^{T} X+\lambda I\right)^{-1} X^{T} y .
$$

Remarks:

- When $\lambda>0$, the estimator is defined even when $n<p$.
- When $\lambda=0$ and $n>p$, we recover the usual least squares solution.

We have

$$
\frac{\partial}{\partial \beta}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \beta_{i}^{2}\right)=2\left(X^{T} X \beta-X^{T} y\right)+2 \lambda \sum_{i=1}^{p} \beta_{i}
$$

$$
=2\left(\left(X^{T} X+\lambda I\right) \beta-X^{T} y\right)
$$

Therefore, the critical points satisfy

$$
\left(X^{T} X+\lambda I\right) \beta=X^{T} y
$$

Note: $\left(X^{T} X+\lambda I\right)$ is positive definite, and therefore invertible. Therefore, the system has a unique solution. Can check using the Hessian that the solution is a minimum. Thus,

$$
\beta^{\text {ridge }}=\left(X^{T} X+\lambda I\right)^{-1} X^{T} y .
$$

Remarks:

- When $\lambda>0$, the estimator is defined even when $n<p$.
- When $\lambda=0$ and $n>p$, we recover the usual least squares solution.
- Makes rigorous "adding a multiple of the identity" to $X^{T} X$.
(3) The Lasso (Least Absolute Shrinkage and Selection Operator):

$$
\hat{\beta}^{\text {lasso }}=\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p}\left|\beta_{i}\right|\right) .
$$

(3) The Lasso (Least Absolute Shrinkage and Selection Operator):

$$
\hat{\beta}^{\text {lasso }}=\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left(\|y-X \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p}\left|\beta_{i}\right|\right) .
$$

- Introduced in 1996 by Robert Tibshirani.
- Equivalent to $\hat{\beta}^{\text {lasso }}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}}\|y-X \beta\|_{2}^{2}$ subject to $\|\beta\|_{1}=\sum_{i=1}^{p}\left|\beta_{i}\right| \leq t$.
- Both sets coefficients to zero (model selection) and shrinks coefficients.
- More "global" approach to selecting variables compared to previously discussed greedy approaches.
- Can be seen as a convex relaxation of the $\hat{\beta}^{0}$ problem.
- No closed form solution, but can solved efficiently using convex optimization methods.
- Performs well in practice.
- Very popular. Active area of research.

Important model selection property

$$
\begin{aligned}
& \hat{\beta}^{\text {lasso }}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}}\|y-X \beta\|_{2}^{2} \\
& \text { subject to }\|\beta\|_{1}=\sum_{i=1}^{p}\left|\beta_{i}\right| \leq t
\end{aligned}
$$

Important model selection property

$$
\begin{aligned}
& \hat{\beta}^{\text {lasso }}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}}\|y-X \beta\|_{2}^{2} \\
& \text { subject to }\|\beta\|_{1}=\sum_{i=1}^{p}\left|\beta_{i}\right| \leq t
\end{aligned}
$$

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $\left|\beta_{1}\right|+\left|\beta_{2}\right| \leq t$ and $\beta_{1}^{2}+\beta_{2}^{2} \leq t^{2}$, respectively, while the red ellipses are the contours of the least squares error function.

ESL, Fig. 3.11.

Important model selection property

$$
\begin{aligned}
& \hat{\beta}^{\text {lasso }}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}}\|y-X \beta\|_{2}^{2} \\
& \text { subject to }\|\beta\|_{1}=\sum_{i=1}^{p}\left|\beta_{i}\right| \leq t
\end{aligned}
$$

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $\left|\beta_{1}\right|+\left|\beta_{2}\right| \leq t$ and $\beta_{1}^{2}+\beta_{2}^{2} \leq t^{2}$, respectively, while the red ellipses are the contours of the least squares error function.

ESL, Fig. 3.11.
Solutions are the intersection of the ellipses with the $\|\cdot\|_{1}$ or $\|\cdot\|_{2}$ balls. Corners of the $\|\cdot\|_{1}$ have zero coefficients.

Important model selection property

$$
\begin{aligned}
& \hat{\beta}^{\text {lasso }}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}}\|y-X \beta\|_{2}^{2} \\
& \text { subject to }\|\beta\|_{1}=\sum_{i=1}^{p}\left|\beta_{i}\right| \leq t
\end{aligned}
$$

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $\left|\beta_{1}\right|+\left|\beta_{2}\right| \leq t$ and $\beta_{1}^{2}+\beta_{2}^{2} \leq t^{2}$, respectively, while the red ellipses are the contours of the least squares error function.

ESL, Fig. 3.11.
Solutions are the intersection of the ellipses with the $\|\cdot\|_{1}$ or $\|\cdot\|_{2}$ balls. Corners of the $\|\cdot\|_{1}$ have zero coefficients.
We will explore the Lasso (computation, properties, etc.) in the next lecture.

Python

Scikit-learn has an object to compute Lasso solution.

Python

Scikit-learn has an object to compute Lasso solution.
Note: the package solves a slightly different (but equivalent) problem than discussed above:

$$
\underset{w \in \mathbb{R}^{p}}{\operatorname{argmin}} \frac{1}{2 n}\|y-X w\|_{2}^{2}+\alpha\|w\|_{1} .
$$

Python

Scikit-learn has an object to compute Lasso solution.
Note: the package solves a slightly different (but equivalent) problem than discussed above:

$$
\underset{w \in \mathbb{R}^{p}}{\operatorname{argmin}} \frac{1}{2 n}\|y-X w\|_{2}^{2}+\alpha\|w\|_{1} .
$$

```
from sklearn.linear_model import Lasso
clf = linear_model.Lasso(alpha=0.1)
clf.fit(X,y)
print(clf.coef_)
print(clf.intercept_)
```

A simple example with simulated data

```
import numpy as np
from sklearn.linear_model import Lasso
import matplotlib.pyplot as plt
# Generate random data
n=100
p = 5
X = np.random.randn(n,p)
epsilon = np.random.randn(n,1)
beta = np.random.rand(p)
y = X.dot(beta) + epsilon
alphas = np.arange(0.1,2,0.1) # 0.1 to 2, step = 0.1
N = len(alphas) # Number of lasso parameters
betas = np.zeros((N,p+1)) # p+1 because of intercept
for i in range(N):
    clf = Lasso(alphas[i])
    clf.fit(X,y)
    betas[i,0] = clf.intercept_
    betas[i,1:] = clf.coef_
plt.plot(alphas,betas,linewidth=2)
plt.legend(range(p))
plt.xlabel('alpha')
plt.ylabel('Coefficients')
plt.xlim(min(alphas), max(alphas))
plt.show()
```


Python (cont.)

Elastic net (Zou and Hastie, 2005)
$\hat{\beta}^{\mathrm{e}-\mathrm{net}} \underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\|y-X \beta\|_{2}^{2}+\lambda_{2}\|\beta\|_{2}^{2}+\lambda_{1}\|\beta\|_{1}$.

Elastic net (Zou and Hastie, 2005)
$\hat{\beta}^{\mathrm{e} \text {-net }} \underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\|y-X \beta\|_{2}^{2}+\lambda_{2}\|\beta\|_{2}^{2}+\lambda_{1}\|\beta\|_{1}$.

- Benefits from both ℓ_{1} (model selection) and ℓ_{2} regularization.

Elastic net (Zou and Hastie, 2005)
$\hat{\beta}^{\mathrm{e} \text {-net }} \underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\|y-X \beta\|_{2}^{2}+\lambda_{2}\|\beta\|_{2}^{2}+\lambda_{1}\|\beta\|_{1}$.

- Benefits from both ℓ_{1} (model selection) and ℓ_{2} regularization.
- Downside: Two parameters to choose instead of one (can increase the computational burden quite a lot in large experiments).

