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Shrinkage methods

Penalizing the coe�cients:

Suppose we want to restrict the number or the size of the
regression coe�cients.

Add a penalty (or �price to pay�) for including a nonzero
coe�cient.

Examples: Let λ > 0 be a parameter.

1

β̂0 = argmin
β∈Rp

(
‖y −Xβ‖22 + λ

p∑
i=1

1βi 6=0

)
.

Pay a �xed price λ for including a given variable into the
model.
Variables that do not signi�cantly contribute to reducing the
error are excluded from the model (i.e., βi = 0).
Problem: di�cult to solve (combinatorial optimization).
Cannot be solved e�ciently for a large number of variables.
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Shrinkage methods (cont.)

Relaxations of the previous approach:

2 Ridge regression/Tikhonov regularization:

β̂ridge = argmin
β∈Rp

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
.

Shrinks the regression coe�cients by imposing a penalty on
their size.
Penalty = λ · ‖β‖22.
Problem equivalent to
β̂ridge = argminβ∈Rp ‖y −Xβ‖22 subject to

∑p
i=1 β

2
i ≤ t.

Penalty is a smooth function.
Easy to solve (solution can be written in closed form).
Generally does not set any coe�cient to zero (no model
selection).
Can be used to �regularize� a rank de�cient problem (n < p).
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Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive de�nite, and therefore invertible.

Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:

When λ > 0, the estimator is de�ned even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous �adding a multiple of the identity� to XTX.

4/10



Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive de�nite, and therefore invertible.

Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:

When λ > 0, the estimator is de�ned even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous �adding a multiple of the identity� to XTX.

4/10



Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive de�nite, and therefore invertible.

Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:

When λ > 0, the estimator is de�ned even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous �adding a multiple of the identity� to XTX.

4/10



Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive de�nite, and therefore invertible.

Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:

When λ > 0, the estimator is de�ned even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous �adding a multiple of the identity� to XTX.

4/10



Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive de�nite, and therefore invertible.

Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:

When λ > 0, the estimator is de�ned even when n < p.

When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous �adding a multiple of the identity� to XTX.

4/10



Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive de�nite, and therefore invertible.

Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:

When λ > 0, the estimator is de�ned even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.

Makes rigorous �adding a multiple of the identity� to XTX.

4/10



Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive de�nite, and therefore invertible.

Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:

When λ > 0, the estimator is de�ned even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous �adding a multiple of the identity� to XTX.

4/10



The Lasso

3 The Lasso (Least Absolute Shrinkage and Selection Operator):

β̂lasso = argmin
β∈Rp

(
‖y −Xβ‖22 + λ

p∑
i=1

|βi|

)
.

Introduced in 1996 by Robert Tibshirani.
Equivalent to β̂lasso = argminβ∈Rp ‖y −Xβ‖22 subject to
‖β‖1 =

∑p
i=1 |βi| ≤ t.

Both sets coe�cients to zero (model selection) and shrinks
coe�cients.
More �global� approach to selecting variables compared to
previously discussed greedy approaches.
Can be seen as a convex relaxation of the β̂0 problem.
No closed form solution, but can solved e�ciently using convex
optimization methods.
Performs well in practice.
Very popular. Active area of research.
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Important model selection property

β̂lasso = argminβ∈Rp ‖y −Xβ‖22
subject to ‖β‖1 =

∑p
i=1 |βi| ≤ t

ESL, Fig. 3.11.

Solutions are the intersection of the ellipses with the ‖ · ‖1 or ‖ · ‖2
balls. Corners of the ‖ · ‖1 have zero coe�cients.

We will explore the Lasso (computation, properties, etc.) in the
next lecture.
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Python

Scikit-learn has an object to compute Lasso solution.

Note: the package solves a slightly di�erent (but equivalent)
problem than discussed above:

argmin
w∈Rp

1

2n
‖y −Xw‖22 + α‖w‖1.

from sklearn.linear_model import Lasso

clf = linear_model.Lasso(alpha=0.1)
clf.fit(X,y)
print(clf.coef_)
print(clf.intercept_)
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Python (cont.)

A simple example with simulated data

import numpy as np
from sklearn.linear_model import Lasso
import matplotlib.pyplot as plt
# Generate random data
n = 100
p = 5

X = np.random.randn(n,p)
epsilon = np.random.randn(n,1)
beta = np.random.rand(p)
y = X.dot(beta) + epsilon

alphas = np.arange(0.1,2,0.1) # 0.1 to 2, step = 0.1
N = len(alphas) # Number of lasso parameters

betas = np.zeros((N,p+1)) # p+1 because of intercept

for i in range(N):
clf = Lasso(alphas[i])
clf.fit(X,y)
betas[i,0] = clf.intercept_
betas[i,1:] = clf.coef_

plt.plot(alphas,betas,linewidth=2)
plt.legend(range(p))
plt.xlabel('alpha')
plt.ylabel('Coefficients')
plt.xlim(min(alphas),max(alphas))
plt.show()
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Python (cont.)
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Elastic net

Elastic net (Zou and Hastie, 2005)

β̂e-net argmin
β∈Rp

‖y−Xβ‖22+λ2‖β‖22+λ1‖β‖1.

Bene�ts from both `1 (model
selection) and `2 regularization.

Downside: Two parameters to
choose instead of one (can
increase the computational burden
quite a lot in large experiments).
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