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Computing the lasso solution

@ Lasso if often used in high-dimensional problems.

o Cross-validation involves solving many lasso problems. (Note:
the solutions can be computed in paralle/ with a computer
cluster when working with large problems.)

@ How can we efficiently compute the lasso solution?

@ Recall: the lasso objective

ly = X513 + ellBll

is NOT differentiable everywhere on RP.

e Many strategies exist for solving minimizing the lasso objective
function,

We will look at two approaches: coordinate descent, and
least-angle regression (LARS).
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Coordinate descent optimization

Objective: Minimize a function f : R" — R.
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through the coordinates.
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Coordinate descent optimization

Objective:
Strategy:

through the coordinates.

xgk+1)

xgk+1)
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2{k+)

= argmin f(z,
x

= argmin f(xg
x

= argmin f(:ng
xT

= argmin f(azg
x

Minimize a function f: R" — R.
Minimize each coordinate separately while cycling

:Egk), a:gk), . ,xgg))

kH), z, :Uék), e ,xI(Jk))

k+1)’ xélﬁ-l)’ z, mflk)’ ’xz()k))
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Coordinate descent optimization

Objective: Minimize a fu
Strategy: Minimize each
through the coordinates.

a:gkﬂ) = argmin f
x

fcgkﬂ) = argmin f
x

:Eékﬂ) = argmin f
xT

k+1) _ .
a:é ) = arg;mnf

Neglected technique in the

nction f: R" — R.
coordinate separately while cycling

k) (k
(as,xé ),xé ), . ,xgg))
(xgkﬂ), T, :Uék), e ,xI(Jk))
(:L‘gkﬂ), l’gk_'_l), x, $Elk), . ,:L‘I()k))
(azgkﬂ), a:gkﬂ), ... ,mff_ﬁl), x).

past that gained popularity recently.
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Coordinate descent optimization

Objective: Minimize a function f : R" — R.
Strategy: Minimize each coordinate separately while cycling
through the coordinates.

x&kﬂ) = argmin f(z, xék), a:gk), e ,xgg))
fcgkﬂ) = argmin f(xgkﬂ), z, :Uék), e ,xI(Jk))
:E:())kﬂ) = argmin f(:ngkﬂ), x§k+1), T, $£1k), . ,:L‘I()k))
x
. k+1) (k41 k41
mékﬂ) = arg;mnf(a:g ),arg ), . 7%(0—1 ),x).

Neglected technique in the past that gained popularity recently.

Can be very efficient when the coordinate-wise problems are easy to
solve (e.g. if they admit a closed-form solution).
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Coordinate descent optimization

1.5

flz,y) =b5a® — 6ay + 5y’
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Source: Wikipedia (Nicoguaro).
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Convergence

Does this procedure always converge to an extreme point of the

objective in general? NO!
3 fay) =z +yl+ 3y — 2|

-3 -2 -1 0 1 2 3
Source: Wikipedia (Nicoguaro).
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Convergence (cont.)

Does coordinate descent work for the lasso? YES! We exploit the
fact that the non-differentiable part of the objective is separable.
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Convergence (cont.)

Does coordinate descent work for the lasso? YES! We exploit the
fact that the non-differentiable part of the objective is separable.
Theorem: (See Tseng, 2001). Suppose

f(x1, ... zp) = folzr,...,2p —1—2]2% (f eRP)
satisfies
Q@ fo:RP — R is convex and continuously differentiable.
Q@ fi:R—>Risconvex (i =1,...,p).
© Theset X0 :={z cRP: f(z) < f(z")} is compact.
Q f is continuous on X0,

Then every limit point of the sequence (z(*));>; generated by
cyclic coordinate descent converges to a global minimum of f.
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Lasso: individual step

Fix x; for j # 1. We need to solve:

! ) u
min 5|y — Az|)3 + a; ||

2
. 1 n p p
:n;niz <yl— Zalmxm> —|—O&Z|J}k|.
=1 m=1 k=1
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Lasso: individual step

Fix x; for j # 1. We need to solve:

! u
min 5|y — Az||5 + a; ||

2
. 1 n p p
:n;niz <yl— Zalmxm> —|—O&Z|J}k|.
=1 m=1 k=1

Now,
a1 2 P
9. 2 Z ( Z azm$m> = Z (yl - Z almxm> X (—ay)
P =1 =1 m=1
= Al(Az —y)

What about the non-differential part?
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Digression: subdifferential calculus

Suppose f is convex and differentiable. Then

fly) = f@) + Vf(2)" (y - 2).

(@) + V@)~ )

_as@)
—
-

Boyd & Vandenberghe, Figure 3.2.
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Digression: subdifferential calculus

Suppose f is convex and differentiable. Then

fly) = f@) + Vf(2)" (y - 2).

(@) + V@)~ )

_as@)
—
-

Boyd & Vandenberghe, Figure 3.2.
We say that ¢ is a subgradient of f at x if

f) = f@)+g"(y—2) Wy
f(=)

fl@) +gf (@ —21),
(@) + 93 (v — @2)

Boyd, lecture notes. 8/16



Digression: subdifferential calculus (cont.)

We define
Of (z) := {all subgradients of f at x}.
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Digression: subdifferential calculus (cont.)

We define
Of (z) := {all subgradients of f at x}.

@ Jf(x) is a closed convex set (can be empty).

o Of(x) ={Vf(x)}if fis differentiable at x.

o If Of(x) = {g}, then f is differentiable at z and Vf(z) = g.
Basic properties:

e J(af) =adf if a> 0.

° I(fi+ f2) =0fi +0f.

Example:
f(z) = |z|
{-1} ifz<0
of(x) =< [-1,1] ifx=0.
P {1} if x>0
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Digression: subdifferential calculus (cont.)

Recall: If f is convex and differentiable, then

f(*) = inf f(x) & 0= Vf(z).
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Digression: subdifferential calculus (cont.)

Recall: If f is convex and differentiable, then

f(*) = inf f(x) & 0= Vf(z).

Theorem: Let f be a (not necessarily differentiable) convex
function. Then

flx®) = igff(x) < 0e€af(x¥).
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Digression: subdifferential calculus (cont.)

Recall: If f is convex and differentiable, then

f(*) = inf f(x) & 0= Vf(z).

Theorem: Let f be a (not necessarily differentiable) convex
function. Then

flx®) = igff(x) < 0e€af(x¥).

Proof.
fly) = f@)+0-(y—2a") < 0€df(a”).

O
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Digression: subdifferential calculus (cont.)

Recall: If f is convex and differentiable, then

f(*) = inf f(x) & 0= Vf(z).

Theorem: Let f be a (not necessarily differentiable) convex
function. Then

flx®) = igff(x) < 0e€af(x¥).
Proof.
fy) = f(&") +0- (y —2") & 0 € 0f (z7).

0J

Despite its simplicity, this is a very powerful and important result.
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Back to the lasso

The function
1 P
flai) = lly - Az|3+a |ax|
k=1

is convex. Its minimum is obtained if 0 € Of(z*).
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Back to the lasso

The function

1 p
flai) = lly - Az|3+a |ax|
k=1

is convex. Its minimum is obtained if 0 € Of(z*).
Let g := ;2 |ly — Azl = AT (Ajw_; — y) + AT Ay,

Then,
{9 — a} itx; <0
of(x) =< [g—a,g+a] ifx;=0.
{9+ a} if x; >0
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Back to the lasso

The function

1 p
flz;) = 5”9 — Az|3 + O‘Z |z

k=1

is convex. Its minimum is obtained if 0 € 9f(x*).
Let 9= 8&: ||y A$||2 - AT(A—iJ:—i - y) + AZTAll‘Z

Then,
{g - a} if x; <0
of(x) =<K [g—a,g+a] ifz;=0.
{g + 04} ifx; >0
Now
, Ally—A iz ) +a o
g-a=0sr=— =g+ .
AT A; 1413

This implies 0 € Of (z*) if 2* = g* + HA AR < 0.

11/16



Back to the lasso (cont.)

Similarly,

Ally—A ) —a 7
AT A; 1 4ill3

g+ta=0&2;,=
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Back to the lasso (cont.)

Similarly,
gtra=0&z;= Ally = Aiz—) —a :g*—i
' AT A; 1413
Therefore
0€df(z) if:c*:g*—%>0.
[ As]|3
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Back to the lasso (cont.)

Similarly,
gtra=0&z;= Ally = Aiz—) —a :g*—i
' AT A; 1 4ill3
Therefore ,
*\ 1 * * a
0cof(x”)if 2" =g" — ——5 >0.
[Aill3
We found a (unique) z* so that 0 € 9f(x*) if
* « * «
g < —7—s5 O0or g > —.
143113 14il3

What happens when ——2 L a7
PP A1 =9 = Tan
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Back to the lasso (cont.)

We have

Ty _ o
B aQSQ*S a2®_ « SAi(y TA_Zx_Z)S a2
1A4illz [RH [RHIE A7 Ai [RHIE

& —a< A;f(y —A_jz_;) <a.

If 2 =0, then g = AT (y — A_jw_;) and s0 0 € [g — o, g + .
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Back to the lasso (cont.)

We have

Ty — .
— 5 S g* S o 5 PR o S A’L (y TA—Z‘,I:_Z) S @ 5
14313 A0z Al A7 Ai 14313

& —a< A;f(y —A_jz_;) <a.

If 2 =0, then g = AT (y — A_jw_;) and s0 0 € [g — o, g + .

We have therefore shown that 0 € Of(z*) if z* =0 and

< <
AR =Y S T
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Lasso: summary

We have shown the following:

T* = g* +
0€df(z™)if a*=g* —
=0

«

[[Adll

_a
([ Adll

2
2

2
2

A2
and g* > —%&
9 7 TAR
a‘n-d _ o < * < (0%
AR =9 = T4l
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Lasso: summary

We have shown the following:

x*zg*+m andg*<—m
0€df(z™)if a*=g* — HAC;”% and g* > HAC; 2
v =0 and — g <97 S R
Therefore, the minimum of f(z) is obtained at
It < TaR
CH R v A v
0 e v A R
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Lasso: summary

We have shown the following:

=g tme adg<-mEp
*\ F = g~ — O and ¢* a
0€0f(z") if 9"~ AT 9> AR
*  « * «
vr =0 and — e <97 < e

* a if ¢ < ——&
g T Y 412
* * [} M * (0%
= — if >
x 9~ AR 9 = TAR
0 lf _ o < * < [0
AR =9 = AT

In other words,

Al (y— Az )
v 5 oS i L —q
= a3 (97) = a4z ( ATA, > ’

where 7). is the soft-thresholding function.
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Soft-thresholding

Hard-thresholding:

Hard-thresholding

Soft-thresholding:

02 (2) = sgn(@)(|z] - e)+

Soft-thresholding

[>e-

N s o @

LooLL
& & b b

B o 2

4 6 8 10 TS0 8 6 4 -2 0 2 4 6 8 10

Note: soft-thresholding shrinks the value until it hits zero (and then

leaves it at zero).

S

ne (@)

z—e ifax>ce
=qzr+e ifax<—e¢
0 if —e<z<e
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Conclusion

To solve the lasso problem using coordinate descent:
@ Pick an initial point x.
@ Cycle through the coordinates and perform the updates

Al (y — Aizy)
) S 7 1
T Moy i3 ( AT A, > '

e Continue until convergence (i.e., stop when the coordinates
vary less than some threshold).

Exercise: Implement this algorithm in Python.

16/16



