MATH 829: Introduction to Data Mining and Analysis
 Computing the lasso solution

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

February 26, 2016

Computing the lasso solution

- Lasso if often used in high-dimensional problems.

Computing the lasso solution

- Lasso if often used in high-dimensional problems.
- Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)

Computing the lasso solution

- Lasso if often used in high-dimensional problems.
- Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)
- How can we efficiently compute the lasso solution?

Computing the lasso solution

- Lasso if often used in high-dimensional problems.
- Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)
- How can we efficiently compute the lasso solution?
- Recall: the lasso objective

$$
\|y-X \beta\|_{2}^{2}+\alpha\|\beta\|_{1}
$$

is NOT differentiable everywhere on \mathbb{R}^{p}.

Computing the lasso solution

- Lasso if often used in high-dimensional problems.
- Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)
- How can we efficiently compute the lasso solution?
- Recall: the lasso objective

$$
\|y-X \beta\|_{2}^{2}+\alpha\|\beta\|_{1}
$$

is NOT differentiable everywhere on \mathbb{R}^{p}.

- Many strategies exist for solving minimizing the lasso objective function,

Computing the lasso solution

- Lasso if often used in high-dimensional problems.
- Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)
- How can we efficiently compute the lasso solution?
- Recall: the lasso objective

$$
\|y-X \beta\|_{2}^{2}+\alpha\|\beta\|_{1}
$$

is NOT differentiable everywhere on \mathbb{R}^{p}.

- Many strategies exist for solving minimizing the lasso objective function,

We will look at two approaches: coordinate descent, and least-angle regression (LARS).

Coordinate descent optimization

Objective: Minimize a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Coordinate descent optimization

Objective: Minimize a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Strategy: Minimize each coordinate separately while cycling through the coordinates.

Coordinate descent optimization

Objective: Minimize a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Strategy: Minimize each coordinate separately while cycling through the coordinates.

$$
\begin{aligned}
x_{1}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x, x_{2}^{(k)}, x_{3}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
x_{2}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x_{1}^{(k+1)}, x, x_{3}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
x_{3}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x_{1}^{(k+1)}, x_{2}^{(k+1)}, x, x_{4}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
& \vdots \\
x_{p}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x_{1}^{(k+1)}, x_{2}^{(k+1)}, \ldots, x_{p-1}^{(k+1)}, x\right)
\end{aligned}
$$

Coordinate descent optimization

Objective: Minimize a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Strategy: Minimize each coordinate separately while cycling through the coordinates.

$$
\begin{aligned}
x_{1}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x, x_{2}^{(k)}, x_{3}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
x_{2}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x_{1}^{(k+1)}, x, x_{3}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
x_{3}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x_{1}^{(k+1)}, x_{2}^{(k+1)}, x, x_{4}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
& \vdots \\
x_{p}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x_{1}^{(k+1)}, x_{2}^{(k+1)}, \ldots, x_{p-1}^{(k+1)}, x\right)
\end{aligned}
$$

Neglected technique in the past that gained popularity recently.

Coordinate descent optimization

Objective: Minimize a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Strategy: Minimize each coordinate separately while cycling through the coordinates.

$$
\begin{aligned}
x_{1}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x, x_{2}^{(k)}, x_{3}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
x_{2}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x_{1}^{(k+1)}, x, x_{3}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
x_{3}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x_{1}^{(k+1)}, x_{2}^{(k+1)}, x, x_{4}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
& \vdots \\
x_{p}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x_{1}^{(k+1)}, x_{2}^{(k+1)}, \ldots, x_{p-1}^{(k+1)}, x\right) .
\end{aligned}
$$

Neglected technique in the past that gained popularity recently.
Can be very efficient when the coordinate-wise problems are easy to solve (e.g. if they admit a closed-form solution).

Coordinate descent optimization

Convergence

Does this procedure always converge to an extreme point of the objective in general? NO!

Convergence (cont.)

Does coordinate descent work for the lasso? YES! We exploit the fact that the non-differentiable part of the objective is separable.

Convergence (cont.)

Does coordinate descent work for the lasso? YES! We exploit the fact that the non-differentiable part of the objective is separable. Theorem: (See Tseng, 2001). Suppose
satisfies

$$
f\left(x_{1}, \ldots, x_{p}\right)=f_{0}\left(x_{1}, \ldots, x_{p}\right)+\sum_{i=1}^{p} f_{i}\left(x_{i}\right) \quad\left(f \in \mathbb{R}^{p}\right)
$$

(1) $f_{0}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is convex and continuously differentiable.
(2) $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is convex $(i=1, \ldots, p)$.
(3) The set $X^{0}:=\left\{x \in \mathbb{R}^{p}: f(x) \leq f\left(x^{0}\right)\right\}$ is compact.
(9) f is continuous on X^{0}.

Then every limit point of the sequence $\left(x^{(k)}\right)_{k \geq 1}$ generated by cyclic coordinate descent converges to a global minimum of f.

Lasso: individual step

Fix x_{j} for $j \neq i$. We need to solve:

$$
\begin{aligned}
& \min _{x_{i}} \frac{1}{2}\|y-A x\|_{2}^{2}+\alpha \sum_{k=1}^{p}\left|x_{k}\right| \\
& =\min _{x_{i}} \frac{1}{2} \sum_{l=1}^{n}\left(y_{l}-\sum_{m=1}^{p} a_{l m} x_{m}\right)^{2}+\alpha \sum_{k=1}^{p}\left|x_{k}\right|
\end{aligned}
$$

Lasso: individual step

Fix x_{j} for $j \neq i$. We need to solve:

$$
\begin{aligned}
& \min _{x_{i}} \frac{1}{2}\|y-A x\|_{2}^{2}+\alpha \sum_{k=1}^{p}\left|x_{k}\right| \\
& =\min _{x_{i}} \frac{1}{2} \sum_{l=1}^{n}\left(y_{l}-\sum_{m=1}^{p} a_{l m} x_{m}\right)^{2}+\alpha \sum_{k=1}^{p}\left|x_{k}\right|
\end{aligned}
$$

Now,

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} \frac{1}{2} \sum_{l=1}^{n}\left(y_{l}-\sum_{m=1}^{p} a_{l m} x_{m}\right)^{2} & =\sum_{l=1}^{n}\left(y_{l}-\sum_{m=1}^{p} a_{l m} x_{m}\right) \times\left(-a_{l i}\right) \\
& =A_{i}^{T}(A x-y) \\
& =A_{i}^{T}\left(A_{-i} x_{-i}-y\right)+A_{i}^{T} A_{i} x_{i}
\end{aligned}
$$

Lasso: individual step

Fix x_{j} for $j \neq i$. We need to solve:

$$
\begin{aligned}
& \min _{x_{i}} \frac{1}{2}\|y-A x\|_{2}^{2}+\alpha \sum_{k=1}^{p}\left|x_{k}\right| \\
& =\min _{x_{i}} \frac{1}{2} \sum_{l=1}^{n}\left(y_{l}-\sum_{m=1}^{p} a_{l m} x_{m}\right)^{2}+\alpha \sum_{k=1}^{p}\left|x_{k}\right|
\end{aligned}
$$

Now,

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} \frac{1}{2} \sum_{l=1}^{n}\left(y_{l}-\sum_{m=1}^{p} a_{l m} x_{m}\right)^{2} & =\sum_{l=1}^{n}\left(y_{l}-\sum_{m=1}^{p} a_{l m} x_{m}\right) \times\left(-a_{l i}\right) \\
& =A_{i}^{T}(A x-y) \\
& =A_{i}^{T}\left(A_{-i} x_{-i}-y\right)+A_{i}^{T} A_{i} x_{i}
\end{aligned}
$$

What about the non-differential part?

Digression: subdifferential calculus

Suppose f is convex and differentiable. Then

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

Boyd \& Vandenberghe, Figure 3.2.

Digression: subdifferential calculus

Suppose f is convex and differentiable. Then

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

Boyd \& Vandenberghe, Figure 3.2.
We say that g is a subgradient of f at x if

Digression: subdifferential calculus (cont.)

We define

$$
\partial f(x):=\{\text { all subgradients of } f \text { at } x\} .
$$

Digression: subdifferential calculus (cont.)

We define

$$
\partial f(x):=\{\text { all subgradients of } f \text { at } x\} .
$$

- $\partial f(x)$ is a closed convex set (can be empty).

Digression: subdifferential calculus (cont.)

We define

$$
\partial f(x):=\{\text { all subgradients of } f \text { at } x\} .
$$

- $\partial f(x)$ is a closed convex set (can be empty).
- $\partial f(x)=\{\nabla f(x)\}$ if f is differentiable at x.

Digression: subdifferential calculus (cont.)

We define

$$
\partial f(x):=\{\text { all subgradients of } f \text { at } x\} .
$$

- $\partial f(x)$ is a closed convex set (can be empty).
- $\partial f(x)=\{\nabla f(x)\}$ if f is differentiable at x.
- If $\partial f(x)=\{g\}$, then f is differentiable at x and $\nabla f(x)=g$.

Digression: subdifferential calculus (cont.)

We define

$$
\partial f(x):=\{\text { all subgradients of } f \text { at } x\} .
$$

- $\partial f(x)$ is a closed convex set (can be empty).
- $\partial f(x)=\{\nabla f(x)\}$ if f is differentiable at x.
- If $\partial f(x)=\{g\}$, then f is differentiable at x and $\nabla f(x)=g$.

Basic properties:

- $\partial(\alpha f)=\alpha \partial f$ if $\alpha>0$.
- $\partial\left(f_{1}+f_{2}\right)=\partial f_{1}+\partial f_{2}$.

Example:

$$
\partial f(x)= \begin{cases}\{-1\} & \text { if } x<0 \\ {[-1,1]} & \text { if } x=0 \\ \{1\} & \text { if } x>0\end{cases}
$$

Digression: subdifferential calculus (cont.)

Recall: If f is convex and differentiable, then

$$
f\left(x^{\star}\right)=\inf _{x} f(x) \Leftrightarrow 0=\nabla f\left(x^{\star}\right) .
$$

Digression: subdifferential calculus (cont.)

Recall: If f is convex and differentiable, then

$$
f\left(x^{\star}\right)=\inf _{x} f(x) \Leftrightarrow 0=\nabla f\left(x^{\star}\right) .
$$

Theorem: Let f be a (not necessarily differentiable) convex function. Then

$$
f\left(x^{\star}\right)=\inf _{x} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) .
$$

Digression: subdifferential calculus (cont.)

Recall: If f is convex and differentiable, then

$$
f\left(x^{\star}\right)=\inf _{x} f(x) \Leftrightarrow 0=\nabla f\left(x^{\star}\right) .
$$

Theorem: Let f be a (not necessarily differentiable) convex function. Then

$$
f\left(x^{\star}\right)=\inf _{x} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right)
$$

Proof.

$$
f(y) \geq f\left(x^{\star}\right)+0 \cdot\left(y-x^{\star}\right) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) .
$$

Recall: If f is convex and differentiable, then

$$
f\left(x^{\star}\right)=\inf _{x} f(x) \Leftrightarrow 0=\nabla f\left(x^{\star}\right) .
$$

Theorem: Let f be a (not necessarily differentiable) convex function. Then

$$
f\left(x^{\star}\right)=\inf _{x} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right)
$$

Proof.

$$
f(y) \geq f\left(x^{\star}\right)+0 \cdot\left(y-x^{\star}\right) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right)
$$

Despite its simplicity, this is a very powerful and important result.

Back to the lasso

The function

$$
f\left(x_{i}\right):=\frac{1}{2}\|y-A x\|_{2}^{2}+\alpha \sum_{k=1}^{p}\left|x_{k}\right|
$$

is convex. Its minimum is obtained if $0 \in \partial f\left(x^{\star}\right)$.

Back to the lasso

The function

$$
f\left(x_{i}\right):=\frac{1}{2}\|y-A x\|_{2}^{2}+\alpha \sum_{k=1}^{p}\left|x_{k}\right|
$$

is convex. Its minimum is obtained if $0 \in \partial f\left(x^{\star}\right)$.
Let $g:=\frac{\partial}{\partial x_{i}}\|y-A x\|_{2}^{2}=A_{i}^{T}\left(A_{-i} x_{-i}-y\right)+A_{i}^{T} A_{i} x_{i}$.
Then,

$$
\partial f(x)= \begin{cases}\{g-\alpha\} & \text { if } x_{i}<0 \\ {[g-\alpha, g+\alpha]} & \text { if } x_{i}=0 \\ \{g+\alpha\} & \text { if } x_{i}>0\end{cases}
$$

Back to the lasso

The function

$$
f\left(x_{i}\right):=\frac{1}{2}\|y-A x\|_{2}^{2}+\alpha \sum_{k=1}^{p}\left|x_{k}\right|
$$

is convex. Its minimum is obtained if $0 \in \partial f\left(x^{\star}\right)$.
Let $g:=\frac{\partial}{\partial x_{i}}\|y-A x\|_{2}^{2}=A_{i}^{T}\left(A_{-i} x_{-i}-y\right)+A_{i}^{T} A_{i} x_{i}$.
Then,

$$
\partial f(x)= \begin{cases}\{g-\alpha\} & \text { if } x_{i}<0 \\ {[g-\alpha, g+\alpha]} & \text { if } x_{i}=0 \\ \{g+\alpha\} & \text { if } x_{i}>0\end{cases}
$$

Now,

$$
g-\alpha=0 \Leftrightarrow x_{i}=\frac{A_{i}^{T}\left(y-A_{-i} x_{-i}\right)+\alpha}{A_{i}^{T} A_{i}}=g^{\star}+\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} .
$$

Back to the lasso

The function

$$
f\left(x_{i}\right):=\frac{1}{2}\|y-A x\|_{2}^{2}+\alpha \sum_{k=1}^{p}\left|x_{k}\right|
$$

is convex. Its minimum is obtained if $0 \in \partial f\left(x^{\star}\right)$.
Let $g:=\frac{\partial}{\partial x_{i}}\|y-A x\|_{2}^{2}=A_{i}^{T}\left(A_{-i} x_{-i}-y\right)+A_{i}^{T} A_{i} x_{i}$.
Then,

$$
\partial f(x)= \begin{cases}\{g-\alpha\} & \text { if } x_{i}<0 \\ {[g-\alpha, g+\alpha]} & \text { if } x_{i}=0 \\ \{g+\alpha\} & \text { if } x_{i}>0\end{cases}
$$

Now,

$$
g-\alpha=0 \Leftrightarrow x_{i}=\frac{A_{i}^{T}\left(y-A_{-i} x_{-i}\right)+\alpha}{A_{i}^{T} A_{i}}=g^{\star}+\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} .
$$

This implies $0 \in \partial f\left(x^{\star}\right)$ if $x^{\star}=g^{\star}+\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}}<0$.

Back to the lasso (cont.)

Similarly,

$$
g+\alpha=0 \Leftrightarrow x_{i}=\frac{A_{i}^{T}\left(y-A_{-i} x_{-i}\right)-\alpha}{A_{i}^{T} A_{i}}=g^{\star}-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}}
$$

Back to the lasso (cont.)

Similarly,

$$
g+\alpha=0 \Leftrightarrow x_{i}=\frac{A_{i}^{T}\left(y-A_{-i} x_{-i}\right)-\alpha}{A_{i}^{T} A_{i}}=g^{\star}-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} .
$$

Therefore,

$$
0 \in \partial f\left(x^{\star}\right) \text { if } x^{\star}=g^{\star}-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}}>0
$$

Back to the lasso (cont.)

Similarly,

$$
g+\alpha=0 \Leftrightarrow x_{i}=\frac{A_{i}^{T}\left(y-A_{-i} x_{-i}\right)-\alpha}{A_{i}^{T} A_{i}}=g^{\star}-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} .
$$

Therefore,

$$
0 \in \partial f\left(x^{\star}\right) \text { if } x^{\star}=g^{\star}-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}}>0
$$

We found a (unique) x^{\star} so that $0 \in \partial f\left(x^{\star}\right)$ if

$$
g^{\star}<-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \quad \text { or } \quad g^{\star}>\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}}
$$

What happens when $-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \leq g^{\star} \leq \frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}}$?

Back to the lasso (cont.)

We have

$$
\begin{aligned}
-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \leq g^{\star} \leq \frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} & \Leftrightarrow-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \leq \frac{A_{i}^{T}\left(y-A_{-i} x_{-i}\right)}{A_{i}^{T} A_{i}} \leq \frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \\
& \Leftrightarrow-\alpha \leq A_{i}^{T}\left(y-A_{-i} x_{-i}\right) \leq \alpha
\end{aligned}
$$

If $x_{i}=0$, then $g=A_{i}^{T}\left(y-A_{-i} x_{-i}\right)$ and so $0 \in[g-\alpha, g+\alpha]$.

Back to the lasso (cont.)

We have

$$
\begin{aligned}
-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \leq g^{\star} \leq \frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} & \Leftrightarrow-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \leq \frac{A_{i}^{T}\left(y-A_{-i} x_{-i}\right)}{A_{i}^{T} A_{i}} \leq \frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \\
& \Leftrightarrow-\alpha \leq A_{i}^{T}\left(y-A_{-i} x_{-i}\right) \leq \alpha
\end{aligned}
$$

If $x_{i}=0$, then $g=A_{i}^{T}\left(y-A_{-i} x_{-i}\right)$ and so $0 \in[g-\alpha, g+\alpha]$.
We have therefore shown that $0 \in \partial f\left(x^{\star}\right)$ if $x^{\star}=0$ and
$-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \leq g^{\star} \leq \frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}}$.

Lasso: summary

We have shown the following:

$$
0 \in \partial f\left(x^{\star}\right) \text { if } \begin{cases}x^{\star}=g^{\star}+\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} & \text { and } g^{\star}<-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \\ x^{\star}=g^{\star}-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} & \text { and } g^{\star}>\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \\ x^{\star}=0 & \text { and }-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \leq g^{\star} \leq \frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} .\end{cases}
$$

We have shown the following:

$$
0 \in \partial f\left(x^{\star}\right) \text { if } \begin{cases}x^{\star}=g^{\star}+\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} & \text { and } g^{\star}<-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \\ x^{\star}=g^{\star}-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} & \text { and } g^{\star}>\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \\ x^{\star}=0 & \text { and }-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \leq g^{\star} \leq \frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} .\end{cases}
$$

Therefore, the minimum of $f(x)$ is obtained at

$$
x^{\star}= \begin{cases}g^{\star}+\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} & \text { if } g^{\star}<-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \\ g^{\star}-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} & \text { if } g^{\star}>\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \\ 0 & \text { if }-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \leq g^{\star} \leq \frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}}\end{cases}
$$

Lasso: summary

We have shown the following:

$$
0 \in \partial f\left(x^{\star}\right) \text { if } \begin{cases}x^{\star}=g^{\star}+\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} & \text { and } g^{\star}<-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \\ x^{\star}=g^{\star}-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} & \text { and } g^{\star}>\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \\ x^{\star}=0 & \text { and }-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \leq g^{\star} \leq \frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} .\end{cases}
$$

Therefore, the minimum of $f(x)$ is obtained at

$$
x^{\star}= \begin{cases}g^{\star}+\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} & \text { if } g^{\star}<-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \\ g^{\star}-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} & \text { if } g^{\star}>\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \\ 0 & \text { if }-\frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}} \leq g^{\star} \leq \frac{\alpha}{\left\|A_{i}\right\|_{2}^{2}}\end{cases}
$$

In other words,

$$
x^{\star}=\eta_{\alpha /\left\|A_{i}\right\|_{2}^{2}}^{S}\left(g^{\star}\right)=\eta_{\alpha /\left\|A_{i}\right\|_{2}^{2}}^{S}\left(\frac{A_{i}^{T}\left(y-A_{-i} x_{-i}\right)}{A_{i}^{T} A_{i}}\right),
$$

where η_{ϵ} is the soft-thresholding function.

Soft-thresholding

Hard-thresholding:

$$
\eta_{\epsilon}^{H}(x)=x \mathbf{1}_{|x|>\epsilon}
$$

Hard-thresholding

Soft-thresholding:

$$
\eta_{\epsilon}^{S}(x)=\operatorname{sgn}(x)(|x|-\epsilon)_{+}
$$

Soft-thresholding

Note: soft-thresholding shrinks the value until it hits zero (and then leaves it at zero).

$$
\eta_{\epsilon}^{S}(x)= \begin{cases}x-\epsilon & \text { if } x>\epsilon \\ x+\epsilon & \text { if } x<-\epsilon \\ 0 & \text { if }-\epsilon \leq x \leq \epsilon\end{cases}
$$

Conclusion

To solve the lasso problem using coordinate descent:

- Pick an initial point x.
- Cycle through the coordinates and perform the updates

$$
x_{i} \rightarrow \eta_{\alpha /\left\|A_{i}\right\|_{2}^{2}}^{S}\left(\frac{A_{i}^{T}\left(y-A_{-i} x_{-i}\right)}{A_{i}^{T} A_{i}}\right) .
$$

- Continue until convergence (i.e., stop when the coordinates vary less than some threshold).

Exercise: Implement this algorithm in Python.

