
MATH 829: Introduction to Data Mining and
Analysis

Computing the lasso solution

Dominique Guillot

Departments of Mathematical Sciences

University of Delaware

February 26, 2016

1/16

Computing the lasso solution

Lasso if often used in high-dimensional problems.

Cross-validation involves solving many lasso problems. (Note:

the solutions can be computed in parallel with a computer

cluster when working with large problems.)

How can we e�ciently compute the lasso solution?

Recall: the lasso objective

‖y −Xβ‖22 + α‖β‖1

is NOT di�erentiable everywhere on Rp.
Many strategies exist for solving minimizing the lasso objective

function,

We will look at two approaches: coordinate descent, and

least-angle regression (LARS).

2/16

Computing the lasso solution

Lasso if often used in high-dimensional problems.

Cross-validation involves solving many lasso problems. (Note:

the solutions can be computed in parallel with a computer

cluster when working with large problems.)

How can we e�ciently compute the lasso solution?

Recall: the lasso objective

‖y −Xβ‖22 + α‖β‖1

is NOT di�erentiable everywhere on Rp.
Many strategies exist for solving minimizing the lasso objective

function,

We will look at two approaches: coordinate descent, and

least-angle regression (LARS).

2/16

Computing the lasso solution

Lasso if often used in high-dimensional problems.

Cross-validation involves solving many lasso problems. (Note:

the solutions can be computed in parallel with a computer

cluster when working with large problems.)

How can we e�ciently compute the lasso solution?

Recall: the lasso objective

‖y −Xβ‖22 + α‖β‖1

is NOT di�erentiable everywhere on Rp.
Many strategies exist for solving minimizing the lasso objective

function,

We will look at two approaches: coordinate descent, and

least-angle regression (LARS).

2/16

Computing the lasso solution

Lasso if often used in high-dimensional problems.

Cross-validation involves solving many lasso problems. (Note:

the solutions can be computed in parallel with a computer

cluster when working with large problems.)

How can we e�ciently compute the lasso solution?

Recall: the lasso objective

‖y −Xβ‖22 + α‖β‖1

is NOT di�erentiable everywhere on Rp.

Many strategies exist for solving minimizing the lasso objective

function,

We will look at two approaches: coordinate descent, and

least-angle regression (LARS).

2/16

Computing the lasso solution

Lasso if often used in high-dimensional problems.

Cross-validation involves solving many lasso problems. (Note:

the solutions can be computed in parallel with a computer

cluster when working with large problems.)

How can we e�ciently compute the lasso solution?

Recall: the lasso objective

‖y −Xβ‖22 + α‖β‖1

is NOT di�erentiable everywhere on Rp.
Many strategies exist for solving minimizing the lasso objective

function,

We will look at two approaches: coordinate descent, and

least-angle regression (LARS).

2/16

Computing the lasso solution

Lasso if often used in high-dimensional problems.

Cross-validation involves solving many lasso problems. (Note:

the solutions can be computed in parallel with a computer

cluster when working with large problems.)

How can we e�ciently compute the lasso solution?

Recall: the lasso objective

‖y −Xβ‖22 + α‖β‖1

is NOT di�erentiable everywhere on Rp.
Many strategies exist for solving minimizing the lasso objective

function,

We will look at two approaches: coordinate descent, and

least-angle regression (LARS).

2/16

Coordinate descent optimization

Objective: Minimize a function f : Rn → R.

Strategy: Minimize each coordinate separately while cycling

through the coordinates.

x
(k+1)
1 = argmin

x
f(x, x

(k)
2 , x

(k)
3 , . . . , x(k)p)

x
(k+1)
2 = argmin

x
f(x

(k+1)
1 , x, x

(k)
3 , . . . , x(k)p)

x
(k+1)
3 = argmin

x
f(x

(k+1)
1 , x

(k+1)
2 , x, x

(k)
4 , . . . , x(k)p)

...

x(k+1)
p = argmin

x
f(x

(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
p−1 , x).

Neglected technique in the past that gained popularity recently.

Can be very e�cient when the coordinate-wise problems are easy to

solve (e.g. if they admit a closed-form solution).

3/16

Coordinate descent optimization

Objective: Minimize a function f : Rn → R.
Strategy: Minimize each coordinate separately while cycling

through the coordinates.

x
(k+1)
1 = argmin

x
f(x, x

(k)
2 , x

(k)
3 , . . . , x(k)p)

x
(k+1)
2 = argmin

x
f(x

(k+1)
1 , x, x

(k)
3 , . . . , x(k)p)

x
(k+1)
3 = argmin

x
f(x

(k+1)
1 , x

(k+1)
2 , x, x

(k)
4 , . . . , x(k)p)

...

x(k+1)
p = argmin

x
f(x

(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
p−1 , x).

Neglected technique in the past that gained popularity recently.

Can be very e�cient when the coordinate-wise problems are easy to

solve (e.g. if they admit a closed-form solution).

3/16

Coordinate descent optimization

Objective: Minimize a function f : Rn → R.
Strategy: Minimize each coordinate separately while cycling

through the coordinates.

x
(k+1)
1 = argmin

x
f(x, x

(k)
2 , x

(k)
3 , . . . , x(k)p)

x
(k+1)
2 = argmin

x
f(x

(k+1)
1 , x, x

(k)
3 , . . . , x(k)p)

x
(k+1)
3 = argmin

x
f(x

(k+1)
1 , x

(k+1)
2 , x, x

(k)
4 , . . . , x(k)p)

...

x(k+1)
p = argmin

x
f(x

(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
p−1 , x).

Neglected technique in the past that gained popularity recently.

Can be very e�cient when the coordinate-wise problems are easy to

solve (e.g. if they admit a closed-form solution).

3/16

Coordinate descent optimization

Objective: Minimize a function f : Rn → R.
Strategy: Minimize each coordinate separately while cycling

through the coordinates.

x
(k+1)
1 = argmin

x
f(x, x

(k)
2 , x

(k)
3 , . . . , x(k)p)

x
(k+1)
2 = argmin

x
f(x

(k+1)
1 , x, x

(k)
3 , . . . , x(k)p)

x
(k+1)
3 = argmin

x
f(x

(k+1)
1 , x

(k+1)
2 , x, x

(k)
4 , . . . , x(k)p)

...

x(k+1)
p = argmin

x
f(x

(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
p−1 , x).

Neglected technique in the past that gained popularity recently.

Can be very e�cient when the coordinate-wise problems are easy to

solve (e.g. if they admit a closed-form solution).

3/16

Coordinate descent optimization

Objective: Minimize a function f : Rn → R.
Strategy: Minimize each coordinate separately while cycling

through the coordinates.

x
(k+1)
1 = argmin

x
f(x, x

(k)
2 , x

(k)
3 , . . . , x(k)p)

x
(k+1)
2 = argmin

x
f(x

(k+1)
1 , x, x

(k)
3 , . . . , x(k)p)

x
(k+1)
3 = argmin

x
f(x

(k+1)
1 , x

(k+1)
2 , x, x

(k)
4 , . . . , x(k)p)

...

x(k+1)
p = argmin

x
f(x

(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
p−1 , x).

Neglected technique in the past that gained popularity recently.

Can be very e�cient when the coordinate-wise problems are easy to

solve (e.g. if they admit a closed-form solution).

3/16

Coordinate descent optimization

Source: Wikipedia (Nicoguaro).

4/16

Convergence

Does this procedure always converge to an extreme point of the

objective in general? NO!

Source: Wikipedia (Nicoguaro).

5/16

Convergence (cont.)

Does coordinate descent work for the lasso? YES! We exploit the

fact that the non-di�erentiable part of the objective is separable.

Theorem: (See Tseng, 2001). Suppose

f(x1, . . . , xp) = f0(x1, . . . , xp) +

p∑
i=1

fi(xi) (f ∈ Rp)

satis�es

1 f0 : Rp → R is convex and continuously di�erentiable.

2 fi : R→ R is convex (i = 1, . . . , p).

3 The set X0 := {x ∈ Rp : f(x) ≤ f(x0)} is compact.

4 f is continuous on X0.

Then every limit point of the sequence (x(k))k≥1 generated by

cyclic coordinate descent converges to a global minimum of f .

6/16

Convergence (cont.)

Does coordinate descent work for the lasso? YES! We exploit the

fact that the non-di�erentiable part of the objective is separable.

Theorem: (See Tseng, 2001). Suppose

f(x1, . . . , xp) = f0(x1, . . . , xp) +

p∑
i=1

fi(xi) (f ∈ Rp)

satis�es

1 f0 : Rp → R is convex and continuously di�erentiable.

2 fi : R→ R is convex (i = 1, . . . , p).

3 The set X0 := {x ∈ Rp : f(x) ≤ f(x0)} is compact.

4 f is continuous on X0.

Then every limit point of the sequence (x(k))k≥1 generated by

cyclic coordinate descent converges to a global minimum of f .

6/16

Lasso: individual step

Fix xj for j 6= i. We need to solve:

min
xi

1

2
‖y −Ax‖22 + α

p∑
k=1

|xk|

= min
xi

1

2

n∑
l=1

(
yl −

p∑
m=1

almxm

)2

+ α

p∑
k=1

|xk|.

Now,

∂

∂xi

1

2

n∑
l=1

(
yl −

p∑
m=1

almxm

)2

=

n∑
l=1

(
yl −

p∑
m=1

almxm

)
× (−ali)

= ATi (Ax− y)
= ATi (A−ix−i − y) +ATi Aixi.

What about the non-di�erential part?

7/16

Lasso: individual step

Fix xj for j 6= i. We need to solve:

min
xi

1

2
‖y −Ax‖22 + α

p∑
k=1

|xk|

= min
xi

1

2

n∑
l=1

(
yl −

p∑
m=1

almxm

)2

+ α

p∑
k=1

|xk|.

Now,

∂

∂xi

1

2

n∑
l=1

(
yl −

p∑
m=1

almxm

)2

=

n∑
l=1

(
yl −

p∑
m=1

almxm

)
× (−ali)

= ATi (Ax− y)
= ATi (A−ix−i − y) +ATi Aixi.

What about the non-di�erential part?

7/16

Lasso: individual step

Fix xj for j 6= i. We need to solve:

min
xi

1

2
‖y −Ax‖22 + α

p∑
k=1

|xk|

= min
xi

1

2

n∑
l=1

(
yl −

p∑
m=1

almxm

)2

+ α

p∑
k=1

|xk|.

Now,

∂

∂xi

1

2

n∑
l=1

(
yl −

p∑
m=1

almxm

)2

=

n∑
l=1

(
yl −

p∑
m=1

almxm

)
× (−ali)

= ATi (Ax− y)
= ATi (A−ix−i − y) +ATi Aixi.

What about the non-di�erential part?

7/16

Digression: subdi�erential calculus

Suppose f is convex and di�erentiable. Then

f(y) ≥ f(x) +∇f(x)T (y − x).

Boyd & Vandenberghe, Figure 3.2.

We say that g is a subgradient of f at x if

f(y) ≥ f(x) + gT (y − x) ∀y.

Boyd, lecture notes.

8/16

Digression: subdi�erential calculus

Suppose f is convex and di�erentiable. Then

f(y) ≥ f(x) +∇f(x)T (y − x).

Boyd & Vandenberghe, Figure 3.2.

We say that g is a subgradient of f at x if

f(y) ≥ f(x) + gT (y − x) ∀y.

Boyd, lecture notes.
8/16

Digression: subdi�erential calculus (cont.)

We de�ne

∂f(x) := {all subgradients of f at x}.

∂f(x) is a closed convex set (can be empty).

∂f(x) = {∇f(x)} if f is di�erentiable at x.

If ∂f(x) = {g}, then f is di�erentiable at x and ∇f(x) = g.

Basic properties:

∂(αf) = α∂f if α > 0.

∂(f1 + f2) = ∂f1 + ∂f2.

Example:

∂f(x) =

{−1} if x < 0

[−1, 1] if x = 0

{1} if x > 0

.

9/16

Digression: subdi�erential calculus (cont.)

We de�ne

∂f(x) := {all subgradients of f at x}.

∂f(x) is a closed convex set (can be empty).

∂f(x) = {∇f(x)} if f is di�erentiable at x.

If ∂f(x) = {g}, then f is di�erentiable at x and ∇f(x) = g.

Basic properties:

∂(αf) = α∂f if α > 0.

∂(f1 + f2) = ∂f1 + ∂f2.

Example:

∂f(x) =

{−1} if x < 0

[−1, 1] if x = 0

{1} if x > 0

.

9/16

Digression: subdi�erential calculus (cont.)

We de�ne

∂f(x) := {all subgradients of f at x}.

∂f(x) is a closed convex set (can be empty).

∂f(x) = {∇f(x)} if f is di�erentiable at x.

If ∂f(x) = {g}, then f is di�erentiable at x and ∇f(x) = g.

Basic properties:

∂(αf) = α∂f if α > 0.

∂(f1 + f2) = ∂f1 + ∂f2.

Example:

∂f(x) =

{−1} if x < 0

[−1, 1] if x = 0

{1} if x > 0

.

9/16

Digression: subdi�erential calculus (cont.)

We de�ne

∂f(x) := {all subgradients of f at x}.

∂f(x) is a closed convex set (can be empty).

∂f(x) = {∇f(x)} if f is di�erentiable at x.

If ∂f(x) = {g}, then f is di�erentiable at x and ∇f(x) = g.

Basic properties:

∂(αf) = α∂f if α > 0.

∂(f1 + f2) = ∂f1 + ∂f2.

Example:

∂f(x) =

{−1} if x < 0

[−1, 1] if x = 0

{1} if x > 0

.

9/16

Digression: subdi�erential calculus (cont.)

We de�ne

∂f(x) := {all subgradients of f at x}.

∂f(x) is a closed convex set (can be empty).

∂f(x) = {∇f(x)} if f is di�erentiable at x.

If ∂f(x) = {g}, then f is di�erentiable at x and ∇f(x) = g.

Basic properties:

∂(αf) = α∂f if α > 0.

∂(f1 + f2) = ∂f1 + ∂f2.

Example:

∂f(x) =

{−1} if x < 0

[−1, 1] if x = 0

{1} if x > 0

.

9/16

Digression: subdi�erential calculus (cont.)

Recall: If f is convex and di�erentiable, then

f(x?) = inf
x
f(x)⇔ 0 = ∇f(x?).

Theorem: Let f be a (not necessarily di�erentiable) convex

function. Then

f(x?) = inf
x
f(x)⇔ 0 ∈ ∂f(x?).

Proof.

f(y) ≥ f(x?) + 0 · (y − x?)⇔ 0 ∈ ∂f(x?).

Despite its simplicity, this is a very powerful and important result.

10/16

Digression: subdi�erential calculus (cont.)

Recall: If f is convex and di�erentiable, then

f(x?) = inf
x
f(x)⇔ 0 = ∇f(x?).

Theorem: Let f be a (not necessarily di�erentiable) convex

function. Then

f(x?) = inf
x
f(x)⇔ 0 ∈ ∂f(x?).

Proof.

f(y) ≥ f(x?) + 0 · (y − x?)⇔ 0 ∈ ∂f(x?).

Despite its simplicity, this is a very powerful and important result.

10/16

Digression: subdi�erential calculus (cont.)

Recall: If f is convex and di�erentiable, then

f(x?) = inf
x
f(x)⇔ 0 = ∇f(x?).

Theorem: Let f be a (not necessarily di�erentiable) convex

function. Then

f(x?) = inf
x
f(x)⇔ 0 ∈ ∂f(x?).

Proof.

f(y) ≥ f(x?) + 0 · (y − x?)⇔ 0 ∈ ∂f(x?).

Despite its simplicity, this is a very powerful and important result.

10/16

Digression: subdi�erential calculus (cont.)

Recall: If f is convex and di�erentiable, then

f(x?) = inf
x
f(x)⇔ 0 = ∇f(x?).

Theorem: Let f be a (not necessarily di�erentiable) convex

function. Then

f(x?) = inf
x
f(x)⇔ 0 ∈ ∂f(x?).

Proof.

f(y) ≥ f(x?) + 0 · (y − x?)⇔ 0 ∈ ∂f(x?).

Despite its simplicity, this is a very powerful and important result.

10/16

Back to the lasso

The function

f(xi) :=
1

2
‖y −Ax‖22 + α

p∑
k=1

|xk|

is convex. Its minimum is obtained if 0 ∈ ∂f(x?).

Let g := ∂
∂xi
‖y −Ax‖22 = ATi (A−ix−i − y) +ATi Aixi.

Then,

∂f(x) =

{g − α} if xi < 0

[g − α, g + α] if xi = 0

{g + α} if xi > 0

.

Now,

g − α = 0⇔ xi =
ATi (y −A−ix−i) + α

ATi Ai
= g? +

α

‖Ai‖22
.

This implies 0 ∈ ∂f(x?) if x? = g? + α
‖Ai‖22

< 0.

11/16

Back to the lasso

The function

f(xi) :=
1

2
‖y −Ax‖22 + α

p∑
k=1

|xk|

is convex. Its minimum is obtained if 0 ∈ ∂f(x?).
Let g := ∂

∂xi
‖y −Ax‖22 = ATi (A−ix−i − y) +ATi Aixi.

Then,

∂f(x) =

{g − α} if xi < 0

[g − α, g + α] if xi = 0

{g + α} if xi > 0

.

Now,

g − α = 0⇔ xi =
ATi (y −A−ix−i) + α

ATi Ai
= g? +

α

‖Ai‖22
.

This implies 0 ∈ ∂f(x?) if x? = g? + α
‖Ai‖22

< 0.

11/16

Back to the lasso

The function

f(xi) :=
1

2
‖y −Ax‖22 + α

p∑
k=1

|xk|

is convex. Its minimum is obtained if 0 ∈ ∂f(x?).
Let g := ∂

∂xi
‖y −Ax‖22 = ATi (A−ix−i − y) +ATi Aixi.

Then,

∂f(x) =

{g − α} if xi < 0

[g − α, g + α] if xi = 0

{g + α} if xi > 0

.

Now,

g − α = 0⇔ xi =
ATi (y −A−ix−i) + α

ATi Ai
= g? +

α

‖Ai‖22
.

This implies 0 ∈ ∂f(x?) if x? = g? + α
‖Ai‖22

< 0.

11/16

Back to the lasso

The function

f(xi) :=
1

2
‖y −Ax‖22 + α

p∑
k=1

|xk|

is convex. Its minimum is obtained if 0 ∈ ∂f(x?).
Let g := ∂

∂xi
‖y −Ax‖22 = ATi (A−ix−i − y) +ATi Aixi.

Then,

∂f(x) =

{g − α} if xi < 0

[g − α, g + α] if xi = 0

{g + α} if xi > 0

.

Now,

g − α = 0⇔ xi =
ATi (y −A−ix−i) + α

ATi Ai
= g? +

α

‖Ai‖22
.

This implies 0 ∈ ∂f(x?) if x? = g? + α
‖Ai‖22

< 0.

11/16

Back to the lasso (cont.)

Similarly,

g + α = 0⇔ xi =
ATi (y −A−ix−i)− α

ATi Ai
= g? − α

‖Ai‖22
.

Therefore ,

0 ∈ ∂f(x?) if x? = g? − α

‖Ai‖22
> 0.

We found a (unique) x? so that 0 ∈ ∂f(x?) if

g? < − α

‖Ai‖22
or g? >

α

‖Ai‖22
.

What happens when − α
‖Ai‖22

≤ g? ≤ α
‖Ai‖22

?

12/16

Back to the lasso (cont.)

Similarly,

g + α = 0⇔ xi =
ATi (y −A−ix−i)− α

ATi Ai
= g? − α

‖Ai‖22
.

Therefore ,

0 ∈ ∂f(x?) if x? = g? − α

‖Ai‖22
> 0.

We found a (unique) x? so that 0 ∈ ∂f(x?) if

g? < − α

‖Ai‖22
or g? >

α

‖Ai‖22
.

What happens when − α
‖Ai‖22

≤ g? ≤ α
‖Ai‖22

?

12/16

Back to the lasso (cont.)

Similarly,

g + α = 0⇔ xi =
ATi (y −A−ix−i)− α

ATi Ai
= g? − α

‖Ai‖22
.

Therefore ,

0 ∈ ∂f(x?) if x? = g? − α

‖Ai‖22
> 0.

We found a (unique) x? so that 0 ∈ ∂f(x?) if

g? < − α

‖Ai‖22
or g? >

α

‖Ai‖22
.

What happens when − α
‖Ai‖22

≤ g? ≤ α
‖Ai‖22

?

12/16

Back to the lasso (cont.)

We have

− α

‖Ai‖22
≤ g? ≤ α

‖Ai‖22
⇔ − α

‖Ai‖22
≤ ATi (y −A−ix−i)

ATi Ai
≤ α

‖Ai‖22
⇔ −α ≤ ATi (y −A−ix−i) ≤ α.

If xi = 0, then g = ATi (y −A−ix−i) and so 0 ∈ [g − α, g + α].

We have therefore shown that 0 ∈ ∂f(x?) if x? = 0 and

− α
‖Ai‖22

≤ g? ≤ α
‖Ai‖22

.

13/16

Back to the lasso (cont.)

We have

− α

‖Ai‖22
≤ g? ≤ α

‖Ai‖22
⇔ − α

‖Ai‖22
≤ ATi (y −A−ix−i)

ATi Ai
≤ α

‖Ai‖22
⇔ −α ≤ ATi (y −A−ix−i) ≤ α.

If xi = 0, then g = ATi (y −A−ix−i) and so 0 ∈ [g − α, g + α].

We have therefore shown that 0 ∈ ∂f(x?) if x? = 0 and

− α
‖Ai‖22

≤ g? ≤ α
‖Ai‖22

.

13/16

Lasso: summary

We have shown the following:

0 ∈ ∂f(x?) if

x? = g? + α

‖Ai‖22
and g? < − α

‖Ai‖22
x? = g? − α

‖Ai‖22
and g? > α

‖Ai‖22
x? = 0 and − α

‖Ai‖22
≤ g? ≤ α

‖Ai‖22
.

Therefore, the minimum of f(x) is obtained at

x? =

g? + α

‖Ai‖22
if g? < − α

‖Ai‖22
g? − α

‖Ai‖22
if g? > α

‖Ai‖22
0 if − α

‖Ai‖22
≤ g? ≤ α

‖Ai‖22
.

In other words,

x? = ηSα/‖Ai‖22
(g?) = ηSα/‖Ai‖22

(
ATi (y −A−ix−i)

ATi Ai

)
,

where ηε is the soft-thresholding function.

14/16

Lasso: summary

We have shown the following:

0 ∈ ∂f(x?) if

x? = g? + α

‖Ai‖22
and g? < − α

‖Ai‖22
x? = g? − α

‖Ai‖22
and g? > α

‖Ai‖22
x? = 0 and − α

‖Ai‖22
≤ g? ≤ α

‖Ai‖22
.

Therefore, the minimum of f(x) is obtained at

x? =

g? + α

‖Ai‖22
if g? < − α

‖Ai‖22
g? − α

‖Ai‖22
if g? > α

‖Ai‖22
0 if − α

‖Ai‖22
≤ g? ≤ α

‖Ai‖22
.

In other words,

x? = ηSα/‖Ai‖22
(g?) = ηSα/‖Ai‖22

(
ATi (y −A−ix−i)

ATi Ai

)
,

where ηε is the soft-thresholding function.

14/16

Lasso: summary

We have shown the following:

0 ∈ ∂f(x?) if

x? = g? + α

‖Ai‖22
and g? < − α

‖Ai‖22
x? = g? − α

‖Ai‖22
and g? > α

‖Ai‖22
x? = 0 and − α

‖Ai‖22
≤ g? ≤ α

‖Ai‖22
.

Therefore, the minimum of f(x) is obtained at

x? =

g? + α

‖Ai‖22
if g? < − α

‖Ai‖22
g? − α

‖Ai‖22
if g? > α

‖Ai‖22
0 if − α

‖Ai‖22
≤ g? ≤ α

‖Ai‖22
.

In other words,

x? = ηSα/‖Ai‖22
(g?) = ηSα/‖Ai‖22

(
ATi (y −A−ix−i)

ATi Ai

)
,

where ηε is the soft-thresholding function.
14/16

Soft-thresholding

Hard-thresholding:

ηHε (x) = x1|x|>ε.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Hard−thresholding

Soft-thresholding:

ηSε (x) = sgn(x)(|x| − ε)+

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Soft−thresholding

Note: soft-thresholding shrinks the value until it hits zero (and then

leaves it at zero).

ηSε (x) =

x− ε if x > ε

x+ ε if x < −ε
0 if − ε ≤ x ≤ ε

.

15/16

Conclusion

To solve the lasso problem using coordinate descent:

Pick an initial point x.

Cycle through the coordinates and perform the updates

xi → ηSα/‖Ai‖22

(
ATi (y −A−ix−i)

ATi Ai

)
.

Continue until convergence (i.e., stop when the coordinates

vary less than some threshold).

Exercise: Implement this algorithm in Python.

16/16

