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Least angle regression (LARS)

Recall the forward stagewise approach to linear regression:

1 Start with intercept y, and centered predictors with
coe�cients initially all 0.

2 At each step the algorithm: identify the variable most
correlated with the current residual.

3 Compute the simple linear regression coe�cient of the residual
on this chosen variable, and add it to the current coe�cient
for that variable.

4 Continued till none of the variables have correlation with the
residuals.

Greedy approach.

However, the solution often looks similar to the lasso solution.

Connection between the two methods?

2/14



Least angle regression (LARS)

Recall the forward stagewise approach to linear regression:

1 Start with intercept y, and centered predictors with
coe�cients initially all 0.

2 At each step the algorithm: identify the variable most
correlated with the current residual.

3 Compute the simple linear regression coe�cient of the residual
on this chosen variable, and add it to the current coe�cient
for that variable.

4 Continued till none of the variables have correlation with the
residuals.

Greedy approach.

However, the solution often looks similar to the lasso solution.

Connection between the two methods?

2/14



Least angle regression (LARS)

Recall the forward stagewise approach to linear regression:

1 Start with intercept y, and centered predictors with
coe�cients initially all 0.

2 At each step the algorithm: identify the variable most
correlated with the current residual.

3 Compute the simple linear regression coe�cient of the residual
on this chosen variable, and add it to the current coe�cient
for that variable.

4 Continued till none of the variables have correlation with the
residuals.

Greedy approach.

However, the solution often looks similar to the lasso solution.

Connection between the two methods?

2/14



Least angle regression (LARS)

Recall the forward stagewise approach to linear regression:

1 Start with intercept y, and centered predictors with
coe�cients initially all 0.

2 At each step the algorithm: identify the variable most
correlated with the current residual.

3 Compute the simple linear regression coe�cient of the residual
on this chosen variable, and add it to the current coe�cient
for that variable.

4 Continued till none of the variables have correlation with the
residuals.

Greedy approach.

However, the solution often looks similar to the lasso solution.

Connection between the two methods?

2/14



Least angle regression (LARS)

Recall the forward stagewise approach to linear regression:

1 Start with intercept y, and centered predictors with
coe�cients initially all 0.

2 At each step the algorithm: identify the variable most
correlated with the current residual.

3 Compute the simple linear regression coe�cient of the residual
on this chosen variable, and add it to the current coe�cient
for that variable.

4 Continued till none of the variables have correlation with the
residuals.

Greedy approach.

However, the solution often looks similar to the lasso solution.

Connection between the two methods?

2/14



Forward stagewise vs lasso

Example: Prostate cancer data (see ESL).

Efron et al., 2003
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LARS

Least angle regression (LARS) is similar to forward stagewise, but
only enters �as much� of a predictor as it deserves.

ESL, Algorithm 3.2.
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LARS (cont.)

Let Ak be the current active set.

βAk
be the coe�cients vectors at step k.

Let rk = y −XAk
βAk

denote the residual at step k.

Then, at step k, we move the coe�cients in the direction

δk = (XT
Ak

XAk
)−1XT

Ak
rk,

i.e., βAk
(α) = βAk

+ α · δk.
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Analysis of LARS

How does the correlation between the predictors and the
residuals evolve?

δk = (XT
Ak

XAk
)−1XT

Ak
rk βAk

(α) = βAk
+ α · δk.

It remains the same for all predictors, and decreases
monotonically.

Indeed, suppose each predictor in a linear regression problem
has equal correlation (in absolute value) with the response.

1

n
|〈xj , y〉| = λ j = 1, . . . , p.

(Recall, we assume the predictors have been standardized.)

Let β̂ be the least-squares coe�cients of y on X and let
u(α) = αXβ̂ for α ∈ [0, 1].
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Analysis of LARS (cont.)

We have 1
n |〈xj , y〉| = λ and u(α) = αXβ̂. Now,

(
1

n
|〈xj , y − u(α)〉|

)p

j=1

=
1

n
|XT (y − u(α))|

=
1

n
|XT (y − αX(XTX)−1XT y)|

=
1

n
|(1− α)XT y|

= (1− α)λ · 1p×1.

Therefore, the correlation between xj and the residuals y − u(α)
decreases linearly to 0.

In LARS, the parameter α is increased until a new variable becomes
equally correlated with the residuals y − u(α).

The new variable is then added to the model, and a new direction
is computed.
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Analysis of LARS (cont.)

Example: Ĉk = current maximal correlation.

Efron et al., 2003.
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Equiangular vector

Why � least angle� regression?

Recal: βAk
(α) = βAk

+ α · δk.

Thus, ŷ(α) = XAk
βAk

(α) = XAk
βAk

+ α ·XAk
δk.

It is not hard to check that uk := XAk
δk makes equal angles

with the predictors in Ak.

Indeed,

XT
Ak
uk = XT

Ak
XAk

δk = XT
Ak
XAk

(XT
Ak
XAk

)−1XT
Ak
rk = XT

Ak
rk.

The entries of the vector XT
Ak
rk are all the same since the

predictors in Ak all have the same correlation with the residuals rk
(by construction).

Conclusion: uk makes equal angles with the predictors in Ak.
Problem: In general, given v1, . . . , vk ∈
Rn, how do we �nd a vector that makes
equal angles with v1, . . . , vk. When is
this possible?
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LARS and Lasso

LARS is closely related to stepwise regression.

There is also a connection to the Lasso.

ESL, Figure 3.15.

On the above �gure, the lasso coe�cient pro�les are almost
identical to those of LARS in the left panel, and di�er for the �rst
time when the blue coe�cient passes back through zero.
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LARS and Lasso (cont.)

The previous observation suggests the following LARS modi�cation.

ESL, Algorithm 3.2a.

Theorem: The modi�ed LARS (lasso) algorithm (Algorithm 3.2a)
yields the solution of the Lasso problem if variables
appear/disappear �one at a time�.

See Efron et al., Least angle regression, The Annals of Statistics,
2004.

Note: the theorem explains the piecewise linear nature of the lasso.
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Consistency of the Lasso

Recall: We proved before that the least-squares estimator is
consistent, i.e.,

β̂n → β

as the sample size n goes to in�nity (under some assumptions).

We now study analogous results for the lasso.
Assumptions:

X1, . . . , Xp are (possibly dependent) random variables.

|Xj | ≤M almost surely for some M > 0, (j = 1, . . . , p).

Y =
∑p

j=1 β
∗
jXj + ε for some (unknown) constants β∗j .

ε ∼ N(0, σ2) is independent of the Xj (σ2 unknown).

Sparsity assumption (speci�ed later).
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Consistency of the Lasso (cont.)

We are given n iid observations

Zi = (Yi, Xi,1, . . . , Xi,p)

of (Y,X1, . . . , Xp).

Our goal is to recover β∗1 , . . . , β
∗
p as accurately as possible.

Let

Ŷ =

p∑
j=1

β∗jXj ,

the best predictor of Y if the true coe�cients were known.
Given β̃1, . . . , β̃p, let

Ỹ =

p∑
j=1

β̃jXj .

De�ne the mean square prediction error by

MSPE(β̃) = E(Ŷ − Ỹ )2.

We will provide a bound on MSPE(β̃) when β̃ is the lasso solution.
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Consistency of the Lasso (cont.)

Given K > 0, let β̃K = (β̃K1 , . . . , β̃
K
p ) be the minimizer of

n∑
i=1

(Yi − β1Xi,1 − · · · − βpXi,p)
2

under the constraint
p∑

i=1

|βi| ≤ K.

(The problem is equivalent to the lasso).

Theorem: Under the previous assumptions and assuming
p∑

j=1

|β∗j | ≤ K for some K > 0 (sparsity assumption),

we have

MSPE(β̃K) ≤ 2KMσ

√
2 log(2p)

n
+ 8K2M2

√
2 log(2p2)

n
.

See Chatterjee, Assumptionless consistency of the Lasso, preprint, 2013.
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