MATH 829: Introduction to Data Mining and

Analysis
Least angle regression

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

February 29, 2016

1/14
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Start with intercept 7, and centered predictors with
coefficients initially all 0.

At each step the algorithm: identify the variable most
correlated with the current residual.

Compute the simple linear regression coefficient of the residual
on this chosen variable, and add it to the current coefficient
for that variable.

Continued till none of the variables have correlation with the
residuals.
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Least angle regression (LARS)

Recall the forward stagewise approach to linear regression:

o

Start with intercept 7, and centered predictors with
coefficients initially all 0.

At each step the algorithm: identify the variable most
correlated with the current residual.

Compute the simple linear regression coefficient of the residual
on this chosen variable, and add it to the current coefficient
for that variable.

Continued till none of the variables have correlation with the
residuals.

Greedy approach.
However, the solution often looks similar to the lasso solution.

Connection between the two methods?
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Forward stagewise vs lasso

Forward Stagewise
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LARS

Least angle regression (LARS) is similar to forward stagewise, but
only enters “as much” of a predictor as it deserves.
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LARS

Least angle regression (LARS) is similar to forward stagewise, but

only enters “as much” of a predictor as it deserves.

Algorithm 3.2 Least Angle Regression.

1.

Standardize the predictors to have mean zero and unit norm. Start
with the residual r =y — ¥, f1,82,..., 8, = 0.

. Find the predictor x; most correlated with r.

. Move 8, from 0 towards its least-squares coefficient (x;, r), until some

other competitor x; has as much correlation with the current residual
as does x;.

. Move ; and S in the direction defined by their joint least squares

coefficient of the current residual on (x;, ), until some other com-
petitor x; has as much correlation with the current residual.

. Continue in this way until all p predictors have been entered. After

min(N — 1,p) steps, we arrive at the full least-squares solution.

ESL, Algorithm 3.2.
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LARS (cont.)

o Let A; be the current active set.
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o Let A; be the current active set.

@ (34, be the coefficients vectors at step k.
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o Let A; be the current active set.
@ (34, be the coefficients vectors at step k.
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LARS (cont.)

o Let A; be the current active set.
@ (34, be the coefficients vectors at step k.

o Letry =y — X4, 84, denote the residual at step k.

Then, at step k, we move the coefficients in the direction
T —1~T
5k; = (XAkXAk) XAkI'k,

ie., fBa, (o) = Ba, + o 0.
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Analysis of LARS

@ How does the correlation between the predictors and the
residuals evolve?

O = (XakXAk)_lxﬁkrk ﬁAk(Oé) = B_Ak + a - 0.
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O = (XakXAk)_lxﬁkrk BAk(a) :B_Ak + a - 0.
@ It remains the same for all predictors, and decreases
monotonically.

@ Indeed, suppose each predictor in a linear regression problem
has equal correlation (in absolute value) with the response.

1
Nz, y)| = A i=1,...,p.
nl(% )| J p

(Recall, we assume the predictors have been standardized.)
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Analysis of LARS

@ How does the correlation between the predictors and the
residuals evolve?

O = (XakXAk)_lxﬁkrk BAk(a) :B_Ak + a - 0.
@ It remains the same for all predictors, and decreases
monotonically.

@ Indeed, suppose each predictor in a linear regression problem
has equal correlation (in absolute value) with the response.

1
Nz, y)| = A i=1,...,p.
nl(% )| J p

(Recall, we assume the predictors have been standardized.)

o Let 3 be the least-squares coefficients of y on X and let
u(a) = aX 5 for a € [0, 1].
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Analysis of LARS (cont.)

We have 1|(z;,y)| = X and u(a) = aX . Now,
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Analysis of LARS (cont.)

We have 1|(z;,y)| = X and u(a) = aX . Now,

(alesy—u@ll) = 11X - o)

n
1 _
= —[XT(y - aX (X7 X)X )|
1
=2|(1-a)XT
n\( a) Xyl
— (1—0&))\'1p><1.
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Analysis of LARS (cont.)

We have 1|(z;,y)| = X and u(a) = aX . Now,

(Mg —uta)l)” = LX)

=1
1 -
= —[XT(y - aX (X7 X)X )|
1
=-|(1-a)XT
~l(1—a) X7yl
— (1—04))\'1p><1.

Therefore, the correlation between x; and the residuals y — u(«)
decreases linearly to 0.
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Analysis of LARS (cont.)

We have 1|(z;,y)| = X and u(a) = aX . Now,

(o= ul@)]) = 2XT (= u(@)
= LIXT(y— aX(XTX) 7 X"y)
= 1 - )Xy
= (1 - 04))\ . 1p><1'

Therefore, the correlation between x; and the residuals y — u(«)
decreases linearly to 0.

In LARS, the parameter « is increased until a new variable becomes
equally correlated with the residuals y — u(«).
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Analysis of LARS (cont.)

We have 1|(z;,y)| = X and u(a) = aX . Now,
Ly —u@)]) = Lx7(y - (o)
Slt@gy —ula j:1—n y—ula
1 _
= —[XT(y - aX (X7 X)X )|
1
=Z|1-a)XT
n\( a) Xyl
:(1—04))\'1p><1.

Therefore, the correlation between x; and the residuals y — u(«)
decreases linearly to 0.

In LARS, the parameter « is increased until a new variable becomes
equally correlated with the residuals y — u(«).

The new variable is then added to the model, and a new direction
is computed.
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Analysis of LARS (cont.)

Example: ('} = current maximal correlation.

LARS
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Equiangular vector

Why “ least angle” regression?
@ Recal: B4, () = B4, + - Ok.
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with the predictors in Ay.
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The entries of the vector Xﬁkrk are all the same since the

predictors in A;, all have the same correlation with the residuals 7,
(by construction).
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Equiangular vector

Why “ least angle” regression?
@ Recal: B4, () = B4, + - Ok.
o Thus, §(a) = X, B4, () = Xa, B4, + - Xa,0k
@ It is not hard to check that uy := X 4, 6 makes equal angles
with the predictors in Ay.
Indeed,
XA we = XA, X460 = X4, X, (X0, Xa) ' X0 70 = X4, T

The entries of the vector Xﬁkrk are all the same since the
predictors in A;, all have the same correlation with the residuals 7,
(by construction).

Conclusion: uj makes equal angles with the predlctors in Ak
Problem: In general, given vy, ..., v; €

R"™, how do we find a vector that makes
equal angles with v1,...,v5. When is
this possible?
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LARS and Lasso

@ LARS is closely related to stepwise regression.
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LARS and Lasso

@ LARS is closely related to stepwise regression.
@ There is also a connection to the Lasso.

Least Angle Regression Lasso
0 0
o 7| o 7|
o o
w S w S
= =
f= =
L n 2w
2 T S e
t= &
v )
o o o o
(S S 2
0 o
T T
T T T T T T T T
0 5 10 15 0 5 10 15
Ly Arc Length L1 Arc Length

ESL, Figure 3.15.

On the above figure, the lasso coefficient profiles are almost
identical to those of LARS in the left panel, and differ for the first

time when the blue coefficient passes back through zero.
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LARS and Lasso (cont.)

The previous observation suggests the following LARS modification.
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LARS and Lasso (cont.)

The previous observation suggests the following LARS modification.

Algorithm 3.2a Least Angle Regression: Lasso Modification.

4a. If a non-zero coefficient hits zero, drop its variable from the active set
of variables and recompute the current joint least squares direction.

ESL, Algorithm 3.2a.
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Algorithm 3.2a Least Angle Regression: Lasso Modification.
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ESL, Algorithm 3.2a.

Theorem: The modified LARS (lasso) algorithm (Algorithm 3.2a)
yields the solution of the Lasso problem if variables
appear/disappear “one at a time".
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See Efron et al., Least angle regression, The Annals of Statistics,
2004.
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LARS and Lasso (cont.)

The previous observation suggests the following LARS modification.

Algorithm 3.2a Least Angle Regression: Lasso Modification.

4a. If a non-zero coefficient hits zero, drop its variable from the active set
of variables and recompute the current joint least squares direction.

ESL, Algorithm 3.2a.

Theorem: The modified LARS (lasso) algorithm (Algorithm 3.2a)
yields the solution of the Lasso problem if variables
appear/disappear “one at a time".

See Efron et al., Least angle regression, The Annals of Statistics,
2004.

Note: the theorem explains the piecewise linear nature of the lasso.
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Consistency of the Lasso

@ Recall: We proved before that the least-squares estimator is
consistent, i.e.,

B — 8

as the sample size n goes to infinity (under some assumptions).
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Consistency of the Lasso

@ Recall: We proved before that the least-squares estimator is
consistent, i.e.,

B — B
as the sample size n goes to infinity (under some assumptions).
@ We now study analogous results for the lasso.
@ Assumptions:
e Xi,..., X, are (possibly dependent) random variables.
o |X;| < M almost surely for some M >0, (j =1,...,p).
oY = Z§:1 B; X + € for some (unknown) constants j3;.

€ ~ N(0,0?) is independent of the X; (o2 unknown).

Sparsity assumption (specified later).
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Consistency of the Lasso (cont.)
We are given n iid observations
Zi =Y, X1, .., Xip)

of (V,X1,...,X,).
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Consistency of the Lasso (cont.)
We are given n iid observations
Zi = (Y5, Xi1, ..., Xip)
of (Y, X1,...,X,).
@ Our goal is to recover 7,..., 3, as accurately as possible.
o Let p
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j=1
the best predictor of Y if the true coefficients were known.
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Y =) BiX;.
j=1
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Consistency of the Lasso (cont.)

We are given n iid observations
Zi = (Y, Xi1, ., Xip)
of (Y, X1,...,X,).
@ Our goal is to recover 7,..., 3, as accurately as possible.
o Let p
Y =) 8X;

j=1

the best predictor of Y if the true coefficients were known.

o Given fB1,...,0p, let P
Y =) BiX;.
j=1

Define the mean square prediction error by
MSPE(3) = E(Y —Y)2
We will provide a bound on MSPE(3) when § is the lasso solution.
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Consistency of the Lasso (cont.)

Given K >0, let 5% = (6K, ... ,Bf) be the minimizer of

Z (Y; = B1Xiq — - — BpXip)®

i=1
under the constraint

)
sz'\ <K.
i1

(The problem is equivalent to the lasso).
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Consistency of the Lasso (cont.)

Given K >0, let 5% = (6K, ... ,Bf) be the minimizer of

Z (Y — B1Xin — - — BpXip)®
i=1
under the constraint

)
sz'\ <K.
i1

(The problem is equivalent to the lasso).

Theorem: Under the previous assumptions and assuming
P
Z 87| < K for some K > 0 (sparsity assumption),
=1

we have

< 21og(2 210g(2p2
MSPE(5%) < 2KMU\/W+ 8K2M2\/W'
n n

See Chatterjee, Assumptionless consistency of the Lasso, preprint, 2013.
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