MATH 829: Introduction to data mining and analysis

Dominique Guillot (EWG 534)

University of Delaware

Spring 2016

MWF 11:15AM – 12:05PM, Room: ALS 226 (Alison Hall)

Syllabus

The midterm will be: March 25th 2016 (in class).

Detailed syllabus.

Textbook

Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, Springer, 2013.

You can download the book in pdf for free here.

Python

We will use Python during the course. A good Python tutorial is available at http://www.scipy-lectures.org/.

The following may be useful to Matlab users: http://mathesaurus.sourceforge.net/matlab-numpy.html

If you have never used Python before, I recommend using Anaconda Python 3.5 https://www.continuum.io/. It contains all the packages we will need.

Here is a Python file containing useful basic commands to get you started. Try running the commands one by one to familiarize yourself with Python. For those who haven't used Python before, you can run the commands in “idle” (comes with Anaconda).

Lectures

Topic Reading Slides Printable slides
Week 1 02/08/2016 Lecture 1 Introduction ESL, Chapter 1 pdf pdf
02/10/2016 Lecture 2 Review of Linear regression pdf pdf
02/12/2016 Lecture 3 Gauss-Markov Theorem ESL, Chapter 3 (up to 3.2.3)pdf pdf
Week 2 02/15/2016 Lecture 4 Regression consistency pdf pdf
02/17/2016 Lecture 5 Statistical tests pdf pdf
02/19/2016 Lecture 6 Subset selection ESL, Chapter 3.3 pdf pdf
Week 302/22/2016 Lecture 7 Penalizing coefficients ESL, 3.4.1, 3.4.2, 3.4.3 pdf pdf
02/24/2016 Lecture 8 Model selection ESL, 7.10.1, 7.10.2, 7.10.3 pdf pdf
02/16/2016 Lecture 9 Lasso solution ESL, 3.8.6 pdf pdf
Week 4 02/29/2016 Lecture 10 Least angle regression ESL 3.4.4 pdf pdf
03/02/2016 Lecture 11 Categorical data ESL, 2.3 pdf pdf
03/04/2016 Lecture 12 Intro. to statistical decision theory ESL, 2.4 pdf pdf
Week 5 03/07/2016 Lecture 13 Logistic regression ESL, 4.4 pdf pdf
03/09/2016 Lecture 14 Linear discriminant analysis ESL, 4.3 pdf pdf
03/11/2016 Lecture 15 Support vector machines ESL, 12.1, 12.2 pdf pdf
Week 6 03/14/2016 Lecture 16 Kernels in SVM ESL, 12.3.1 pdf pdf
03/16/2016 Lecture 17 Splines ESL, 5.1-5.4 pdf pdf
03/18/2016 Lecture 18 Lab ESL, 5.2.3 pdf pdf
Week 7 03/21/2016 Lecture 19 Kernel smoothing ESL, 6.1-6.5 pdf pdf
03/23/2016 Lecture 20 Density estimation ESL, 6.6 pdf pdf
03/25/2016 Midterm In class
Week 8 Spring break
Week 9 04/04/2016 Lecture 21 PCA ESL, 14.5.1 pdf pdf
04/06/2016 Lecture 22 Decision trees ESL, 9.2 pdf pdf
04/08/2016 Lecture 23 Random forests ESL, 8.7, 15.1-15.3 pdf pdf
Week 10 04/11/2016 Lecture 24 Neural Networks I ESL, 11.1-11.4 pdf pdf
04/13/2016 Lecture 25 Neural Networks II pdf pdf
04/15/2016 Lecture 26 Lab II pdf pdf
Week 11 04/18/2016 Lecture 27 The EM algorithm ESL, 8.5.1, 8.5.2 pdf pdf
04/20/2016 Lecture 28 The EM algorithm - part 2 pdf pdf
04/22/2016 Lecture 29 ICA ESL, 14.7 pdf pdf
Week 12 04/25/2016 Lecture 30 Clustering I ESL, 14.3 pdf pdf
04/27/2016 Lecture 31 Clustering II von Luxburg 2007 pdf pdf
04/29/2016 Lecture 32 Clustering III von Luxburg 2007 pdf pdf
Week 13 05/02/2016 Lecture 33 Graphical Models I ESL, 17.1-17.2 pdf pdf
05/04/2016 Lecture 34 Graphical Models II pdf pdf
05/06/2016 Lecture 35 Graphical Models III ESL, 17.3 pdf pdf
Week 14 05/09/2016 Lecture 36 Markov Chains pdf pdf
05/11/2016 Lecture 37 Hidden Markov models pdf pdf
05/13/2016 Lecture 38 Intro. to Bayesian analysis pdf pdf
05/23/2016 Project presentations 10 AM - 4 PM (Gore 114) Schedule and abstracts